Bash Shell Scripting (part 6)

Purpose of Arrays
Using Arrays e
Working with Temporary Files

Bash Shell Scripting (part 6)

Purpose of Arrays
Using Arrays e
Working with Temporary Files

Purpose of Arrays

We finish shell scripting by using arrays by reading and storing
networking information for a Linux server (in this case, your
c7host).

Arrays are an incredibly useful tool that works like a "storage
container" of variables. Arrays have names like variables, but
are numbered for quick storage and access of related
elements. Indices are 1.D. numbers for array access. The first
index starts at O (i.e. zero) instead of 1.

"I‘e‘ rﬁ;& useful when used with loops to store or display
data or |
(e.g. sorting) can

within vanables Also, common functions

How Arrays Work

Unlike with other programming languages (like C, C++), you do not have
to define an array.

You can store data into array elements in a number of ways.
Index numbers must start from zero.

Examples:

array_name[0]="l Like OPS235" # store array elements individually
array_name[1]="I am on lab6"

array_name=(I Like OPS235) # stores 3 array elements as same time

How Arrays Work

You can display the arrays a number of different ways:
Individually:

echo ${array_name[0]}
echo ${array_name[1]}
etc...

Display all Elements in the Array:

echo ${array_name[*]}
echo ${array name[@]}

NOTE: Usually loops (such as the for loop) are very useful for inputting
data into array elements as well as displaying array elements. The
next slide provides examples of using a loop to enter and display array
elements.

How Arrays Work

Example:

Use for loop to store array elements
for((x=0; x<5; x++)) # Example of a regular array
do
read -p "Enter item #$((x+1)): " item[$x]
done

Use for loop to display stored array elements
for((y=0; y<5; y++))
do
echo ${item[y]}
done

Place the code above into a shell script, set execute permissions and
run the shell script to see how it works.

Purpose of Associative Arrays

As opposed to using index numbers to access or store data
Into an array element, you can also use what is referred to an
Associative Array.

Associative arrays use key-words instead of numbers.
Therefore the array elements are associated with words,
names, etc that are easier to remember as opposed to
numbers.

How Associative Arrays Work

You would need to define an Associative Array. This is like saying that
you are going to use a storage container to store your data (access by
keywords instead of numbers).

declare -A array _name

Once you have set your array, you can now start to store data into
array elements. Numbers (referred to as indices) within square
brackets following the array name can contain data. Index numbers
must start from zero.

Examples:

array _name[wordl1]="hello"
array-namef[word2]="good-bye"

How Associative Arrays Work

Example:

set a b ¢ # Example of an "Associative Array"

for x
do
read -p "Enter item $x: " item["$x"]
echo item[$x] is: ${item["$x"]}
done

Place the code above into a shell script, set execute permissions and run
the shell script to see how it works.

How Associative Arrays Work

Veus e maned L oo i ki Arrey, To i
e e g [Lt O 1Y i LAY T S VUL 1

ot iy

Using Temporary Files

When creating temporary files, it is important NOT to store on a user's
account (to avoid overwriting their existing files). Instead, temporary
files can be created in the /tmp directory.

The $$ variable can be used as the filename extension which assigns
the current PID of the shell script running to make the filename unique,
and allow easy removal at the end of the shell script by deleting ALL
files in the /tmp directory with the extension: .$$

Example:

Is -IR > /tmp/temp-file.$$
grep secret /tmp/temp-file.$$
rm /tmp/*.$$

Bash Shell Scripting (part 6)

Purpose of Arrays
Using Arrays e
Working with Temporary Files

