OPS235

Bash Shell Scripting - Part 1

Post Install Commands
Bash Shell Scripting Essentials
Creating @:Rost Install Report

Iiriiiig, o
AAAT .? . o e
v » iy - . 114
- .

ik v M T T
.

OPS235

Bash Shell Scripting - Part 1

Post Install Commands
Bash Shell Scripting Essentials
Creating @:Rost Install Report

Iiriiiig, o
AAAT .? . o e
v » iy - . 114
- .

ik v M T T
.

Post-Install Linux Commands

It is very common for System Administrators to keep records regarding
their installed computer systems. For example, it is necessary to have a
record of all the hardware information for each machine in order to help
fix computer hardware problems, and to assist when purchasing
additional consistent computer hardware.

Therefore, it makes sense to also have a record of the installed
computer software as well. This can contain information regarding the
Linux operating system such as kernel version, installed software,
running processes, and network connectivity.

""
0.‘

Post Install Linux Commands

Below are some common LInux commands to provide information
for a newly install Linux server.

Basic Linux OS information such as kernel version, host-name of Linux
server, and all processes that are running on the system after installation:
uname -rv, hostname, ps -ef

Obtaining number of installed packages in the rpm database:

rom -q -a | wc -l, rpm-q -a -l | wc -l, rpm -q -| gedit | wc -I

(Obtain number of installed packages in the rpm database. Option -q is to
"query" information, option -a means for all installed packages, option -I
means all files installed as opposed to just the application)

Obtain network connectivity confirmation including: IP ADDRESS,
Netmask, routing (default gateway), and the default Domain Name Server:
ifconfig, route -n, nslookup

Recording Installed System Information

It is important when issuing this commands to record information (for
example IP ADDRESS) for your c7host machine, and and other virtual
machines that you will be creating in lab2.

Why?!?

One reason is that throughout the labs to test network connectivity or
perform tasks on your VMs remotely from your host via SSH you will
need to know your machines IP ADDRESSES for at least labs 1 - 5.

Another reason is that you will be required to issue or note the

IP Address of any machine in order to run a lab-checking script. You will
be using the same regular user IDs and passwords for your
hostmachine and your \VMs.

Accessing the Admin Account (root)

Many administrative tasks require the root administrative account.
There are many ways to access this administration account:
- At a CLI terminal login, enter the username root (then enter root password)
+ You can also run a command to "switch user" temporarily and when you exit,

you return to the previous user. The command is called: su

The su command is referred to as switch user (not "superuser")
If there is no username as an argument, then it defaults to root.

Below are some subtle tricks when using the su command:

su Remains in regular user's directory, does not run root's startup script(s).
su - Changes to root's home directory (/root) and runs root's start script(s).

Shell Scripting

You may have learned about creating and running Bash Shell Scripts in
your ULIT01 course. Shell scripts help Linux users and system
administrators to automate repetitive tasks in order to become more
efficient and to help them save time. You will be reviewing and building
a basic Bash Shell script to generate information reports for your newly-
installed Linux host machine.

If you require additional practice in creating shell scripts , run the
following command in your Matrix account:

/home/murray.saul/scripting-1

She-Bang Line: #!/bin/bash

Shell scripts have evolved over the past 40 years. To avoid running a
newer shell script on an older shell, it is recommended to force running
the shell script in the correct shell.

In order to do this, on the first line at the beginning of the shell script,
you add the #! special command followed by the pathname of a shell
to run the shell script.

In other words, # as in "shhhh" {i.e. a comment) and ! is referred to as
"bang" (i.e. run a commmand). To see how ! works, run the history
command and then enter ! following by a command number from the
output of the history command and press ENTER to see what happens.

If there is no shell on that machine, the shell script will not run as a
precaution. The Linux administrator should know how to make a fix to
the shell script if required).

\/ariables

There are 3 types of variables that can be used in shell scripting:
ENVIRONMENT (eg. $USER). Useful for using system information

User-defined ($varName). Can create and use your own custom variables
Can be set with equal sign (eg. var="Murray Saul"), or can use the read
command to store variables (eg. read -p "enter number" userNumber)

Positional parameters (eg. $1, $2... containing arguments after shell script or by
using set command (eg. set $(Is)).

Using a dollar sign (%) in front of variable expands the value assigned.
Example:

read -p "enter your age (in years): " yourAge
echo "You are $yourAge vears old"

Command Substitution

Command substitution is a useful method to expand output from
a command to be used as an argument for another command.

Here is an example: If your issued the command file $(Is), the
shell would notice $(Is) and IMMEDIATELY expand it - which in
this case, would issue the Is command and list all non-hidden
filenames in the current directory. But in this case, those file
names would be come arguments (each separated by a space)
AFTER the file command which would describe the file-type of
each of those files.

Examples (try to guess what each one does):
set $(Is):echo $#:echo $*

echo "hosthame: $(hostname)"

Control Flow Statements (logic)

The test command can be used to see if a condition is true or false

(i.e. test SUSER = "root") . The $? special shell variable stores the result (zero
if true, non-zero if false).

For example:

test "word" = "word"
echo $?

(output will be zero which is true in Unix/Linux - nonzero value is false)

DNS Configuration

Control Flow Statements (logic)

Square brackets [] can be used to represent the test command with the condition
Inside the brackets (spaces separating brackets).

Can use if statement with brackets to run commands if test condition is true. If the
test condition is false do nothing. Note commands to run if test condition is true
are indented to help identify this as a logic "block" of scripting code.

Example:

if [SUSER = "root"]

then
echo "You must be root" >&2 # >&2 is a "trick" to make output an error message
exitl

fi

Control Flow Statements (logic)

The if-else statement runs commands if the condition tested is true and runs a different
set of commands if the condition tested is false. The if-elif-else statement tests a
condition and keeps retesting a series of conditions if the previous tests were false. If all
tests are false, then the else statement is used to run the last alternate set of
commands.

For number comparison when testing conditions: use: -gt, -ge, -It, -le, -eq, -ne

Examples:
if [$age -gt 65] if [$grade -gt 79]
then then
echo "retire" echo "You get Good Mark"
else elif [$grade -gt 49]
echo "don't retire" then
fi echo "You pass”

else

echo "You fail"
fi

Control Flow Statements (logic)

For testing for file information, you can use the -d option to test if
directory pathname exists, and -f option if the file pathname exists.
You can use ! for negation.

Examples:

if [-d directory-pathname]
then

echo "directory exists"

fi

if [!-f file-pathname]
then
echo "File does not exist"

f

