OPS235

Bash Shell Scripting - Part 2

Bash Shell Scripting Essentials / Continued
Creating a VM Backup Script

OPS235

Bash Shell Scripting - Part 2

Bash Shell Scripting Essentials / Continued
Creating a VM Backup Script

Additional Bash Shell Essentials

In order to write a useful program (Bash shell script), it should contain
several key elements:

- Variables (environment, user-defined, positional parameters)
« Logic (if, if-else, if-elif-else statements)

- Mathematical Operations

« Loops

We have discussed the first two elements in labl.

':??bj we will focus on mathematical operations and loops.
t '?l lab2, you will either create or download scripts (using
w‘q
our

'tn some using the virsh command) to backup and

these scri
manipulate y

Mathematical Operations

Your Bash shell script may be required to perform mathematical
operations such as adding, subtracting, multiplying and dividing
numbers (most likely stored in variables).

In shell scripting, variables store all data as text (i.e. not numbers). This
makes it easier for shell scripting since you don't have to declare the
data type of a variable (i.e. integer or a floating point number) as in the
C, C++, or Java programming languages. Unfortunately, as a result, you
can't simply use math symbols directly in shell scripting.

Example:

num1=4; num2=5;
echo $num1 + $num?2

Output:
4 +5

Mathematical Operations
Therefore, you need to have the shell convert the numbers (stored as text) into
binary numbers to be used for mathematical calculations.
In Bash shell scripting, you use the syntax $(()) to perform math operations.
Example:

num1=4; num2=5:
echo ${({$num1 + $num2))

Output:
9

Comments:

When using $(()) you do NOT have to use the $ inside that math expression
to expand the variables. The following work work: echo $((num1 +num?2))

Mathematical Operators

There are various mathematical operators that can be used with the
$(()) math expression.

+ addition

- subtraction

* multiplication

** exponentiation (eg: echo $((2**2)) would display 4)
/ division

% modulus (remainder from division)

Note: $(()) does not handle floating point decimals.
You would need to use other commands for that such as awk or bc.

Mathematical Operators

Here is an "age-old" programming trick to determine if an integer that a user
entered is either an odd or even number:

read -p "please enter an integer: " mylnteger
if [$((mylInteger % 2)) -ne 0]
then
echo "$mylnteger is odd"
else
echo "$mylnteger is even”
il

Output (assume user enters the integer 3):

please enter an integer: 3
3 is odd

Comment:
Module (%) indicates there is a remainder of 1 because 2 does not go into the

number 3 evenly when divided. Therefore the result is not equal to zero (which
make the condition true) and prints that the number is odd.

DNS Configuration

Control Flow Statements

Control Flow Statements are used in shell scripting to make the shell script perform
differently based on the value of variables.

In lab1 notes, we looked at logic control flow statements such as
if, if-else, if-elif-else

We will now look at using loops to have sections of the shell script
repeat commands based on test conditions.

Using variables, and control flow statements, such as logic and loops
are extremely useful for creating powerful shell scripts.

oo o - —wum\ow
60.1.

Control Flow Statements (loops)

Wikipedia defines a conditional loop as:

"... a way for computer programs to repeat one or more various steps
depending on conditions set either by the programmer initially or real-time by
the actual program.”

A technical term used to represent looping in programs is called iteration.

https://en.wikipedia.org/wiki/Conditional_loop

Control Flow Statements (loops)

There are different types of loops can be used in programming and shell
scripting:

Determinant loops (such as for loops) usually repeat for a preset or
"known" number of times

In-determinant loops (such as while or until loops) repeat based on
unknown conditions (like waiting for user to enter correct datal).

Determinant Loops (for loop)

Here are some examples using for loops:

FOR LOOP (with arguments) FOR LOOP (positional parameters)
forxin | like ops235 set ops235is fun
do for x
echo "The argument is: $x" do
done echo "argument is: $x"
done
Output:
Output:
The argument is: | argument is: ops235
The argument is: like argument is: is
The argument is: 0ps235 argument is: fun
Comment: Comment:
Each argument is stored as the Each positional parameter (eg. $1, $2, etc)
variable x and repeated in command is stored as the variable x and the command
until all arguments were used is repeated until all were used.

Determinant Loops (for loop)

You can also use a for loop in a more traditional method like used with the
C, C++, or Java pgramming languages. To make the for loop work this way, it
required mathematical operations which we already discussed.

FOR LOOP (traditional method using mathematical operations)
for ((x = 1; x <= 3; x++))
do
echo "The number is; $x"
done

Output:

The number is 1
The number is 2
The number is 3

Comment:

The variable x is initialized with a value of 1. The command will repeat as
long as the value is equal or less then 3. X++ is a shortcut for x=x+1 which
means to advance the value of x by 1 at the end of each loop. Note ({))
allows for spaces between = and you can use <, >, =>, =< symbols!

Indeterminant Loops (while, until)

In-determinant loops repeat based on unknown conditions. Unlike determinant loops, you
may not have a pre-determined (known) number of times it will loop. An example would be
for error checking to force the user to keep entering data until it is correct. You can use
pipeline commands (using grep or egrep) for this purpose. The until statement repeats "until
test condition is true". The while statement repeats only "while test condition is true"

Example:

read -p "enter a whole number: " hum

until echo $num | grep -q "~[0-9][0-9]*$"

do

read -p "Incorrect. Please enter WHOLE NUMBER: " num
done

Output:

enter a whole number: x

Incorrect. Please enter WHOLE NUMBER: 2X9
Incorrect. Please enter WHOLE NUMBER: 43

Indeterminant Loops (while, until)

The conditional statement && runs next command if the previous command or test is true.
The Conditional statement || runs next command if the previous command or test is false.

Example:

read -p "pick a number between 1 and 10: " num
while [$num -1t 11| [$num -gt 10]
do

read -p "Incorrect. Please pick number between 1 and 10: " num
done

Output:

pick a number between 1 and 10: 14

Incorrect. Please pick number between 1 and 10: -2
Incorrect. Please pick number between 1 and 10: 6

