OPS235

Bash Shell Scripting - Part 4

Bash Shell Scripting Essentials / Continued
Creating Multiple Users from a Database file

OPS235

Bash Shell Scripting - Part 4

Bash Shell Scripting Essentials / Continued
Creating Multiple Users from a Database file

Bash Shell Scripting - Using options

In labs1, 2 and 3 you have learned some useful tools to create useful Bash Shell
scripts which included: variables, command substitution, mathematical operators,
logic, loops, the Here Document and the sed command .

In Lab4, you will be learning to make your shell scripts work more like commands
(i.e. commands that accept options). In order to do this, we need to learn 2
additional scripting tools:

- The case statement
A logic statement that is considered to be a useful replacement for the if-
elif-else command in certain situations.

- The getopts function
A build in function used to verify if an option for that script is valid, and if
the options includes data to use.

The case statement

The case statement is a control-flow statement that works in a similar
way as the if-elif-else statement (but is more concise). This
statement presents scenerios or "cases" based on values or regular
expressions (not ranges of values like if-elif-else statements).

The statement) is used to represent a constant that will perform an
action if the variable matches that value.

A break statement ;; is used to "break-out" of the statement (and not
perform other actions).

A default case * is also used to catch exceptions

The case statement

Here is an example:

read -p "pick a door (1 or 2): " pick
case $pick in
1) echo "You win a car!" ;;
2) echo "You win a bag of dirt!" ;;
*) echo "Not a valid entry"
exit 1;;
esac

OUTPUT:

pick a door (1 or 2): 7
Not a valid entry

pick a door (1 or 2): 1
You win a car!

Comments: Notice that this is NOT a loop. The user needs to re-run the command if
the choice is not 1 or 2. This can be useful for error checking.

The case statement

Here is another example that is suited for error checking as well:

read -p "enter a single digit: " digit
case $digit in
[0-9]) echo "Your single digit is: $digit" ;;
*) echo "not a valid single digit"
exitl;;
esac

OUTPUT:

enter a single digit: x
not a valid single digit
enter a single digit: 23
not a valid single digit
enter a single digit: 5
Your single digit is: 5

Comments: Notice that this is NOT a loop. The user had to run this shell script 3 times
before getting the correct response. Also note that regular expressions can be used for
the different cases to provide flexibility (eg. for error checking)

The getopts function

The getopts function allows the shell scripter to create scripts that
accept options (like options for Linux commands). This provides the
Linux administrator with scripts that provide more flexibility and
versatility. A built-in function called getopts (i.e. get command options)
is used in conjunction with a while loop and a case statement to carry
out actions based on if certain options are present when the shell script
IS run.

The variable $OPTARG can be used if an option accepts text (denoted in
the getopts function with an option letter followed by a colon. Case
statement exceptions use the :) and \?) cases for error handling.

The getopts function

Here is an example of using a while loop, a case statement
and the getopts function to make a shell script only accept the
options -a, -b, or -¢ (or any combination of those letters after

the minus sign):

while getopts abc: name
do
case $name in
a) echo "Action for option \"a\"" ;;
b) echo "Action for option \"b\"" ;;
c) echo "Action for option \"c\""
echo Value is: SOPTARG" ;;
1) echo "Error: You need text after -c option'
exit 1 ;;
\?) echo "Error: Incorrect option”
exitl ;
esac
done

The getopts function

Take some time to view the code on the previous slide to
understand how it works.

Some OUTPUT Examples (if this was a script called option.bash):
/option.bash -x
Error: Incorrect option

/option.bash -c
Error: You need text after -c

/Joption.bash -ab -c hello
Action for option "a"
Action for option "b"
Action for option "c
Value is: hello

The getopts function

In lab4, you will be creating a Bash shell script that will
require an option -i followed by an existing pathname for
a database text file that will automatically create users
(from any number from 1 to 10,000)!

Try to understand how that shell script works and also try
to gain an appreciation how creating a testing a shell
script can help save a Linux system administrator time!

OPS235

Bash Shell Scripting - Part 4

Bash Shell Scripting Essentials / Continued
Creating Multiple Users from a Database file

