Linux System Admin

Monitoring Hard Disk Space
Using erontabs =
The awk _mggd qassssciace™

_____,..-I-"
AN .

PR 5 St

Linux System Admin

Monitoring Hard Disk Space
Using erontabs =
The awk _mggd qassssciace™

_____,..-I-"
AN .

PR 5 St

Monitoring Hard Disk Space

Another essential duty of a Linux system
administrator is to anticipate problems and
take preventative measures to avoid
computer system problems before they occur.

An example would be to periodically monitor
hard disk space In order to make adjustments

4 it Impacts on system performance.
wa 7V 3
g Py

Monitoring Hard Disk Space

There are various commands you can issue in order to
monitor hard disk space:

df -h (view free space for various partitions)
du -ha ~userid | more (view disk usage for user)
find -P / -size +100000k (locate large files)

Those commands can be added to a shell script to be run
periodically in order to detect hard disk space issues.

Automatically Running Shell Scripts

It would be highly unlikely to expect a system administrator to
stay up late

(eg. 2 a.m.) or to always remember to manually run a shell
script to terminate processes or to re-boot Linux servers.

crond (the cron daemon) is used to refer to these shell
scripts (or other commands or programs) and to run them on
a pre-determined basis. The term cron comes from the old
word chronograph meaning a special type of watch (actually
a stop-watch) to help monitor and schedule routine tasks.

Database files for scheduling execution of commands ro
programs (referred to as cron tables) are used to provide
instructions on how frequent shell scripts or commands can
be run. Usually, you run the crontab command in order to edit
this table to add / remove / modify scheduling instructions.

Automatically Running Shell Scripts

Common crontab command options:

crontab -e Edit crontab file
crontab -d Delete crontab file

crontab -l List crontab file entries

Automatically Running Shell Scripts

From the following WIKI (https://en.wikipedia.orq/wiki/Cron):

Each 1line of a crontab file represents a job (crontab entry), and is
composed of a CRON expression, followed by a shell command to execute.

Below is the typical layout of the crontab entry:

min (@ - 59)

hour (0@ - 23)

day of month (1 - 31)

month (1 - 12)

day of week (0 - 6) (0 to 6 are Sunday to
Saturday, or use names; 7 1s also Sunday)

* * * * * command(s), shell script, or program to execute

Automatically Running Shell Scripts

crontab entry examples (source: https:#en.wikipedia.org/wiki/Cron)

***** command # run every minute, all the time
0**** command # run at minute zero, every hour

15****command # run at minute 15 instead (i.e. 00:15, 01:15, etc)

302 ***command # run once aday, at 2:30am:

002 **command #run once a month, on the second day of the month
at midnight (i.e. January 2nd 12:00am,
February 2nd 12:00am etc.)

Automatically Running Shell Scripts

Additional crontab entry examples (source: https:/len.wikipedia.org/wiki/Cron)

0***1 command # run on Mondays, every hour (i.e. 24 times in one day,
but only on Mondays)

/5 *** command # run 12 times per hour, i.e. every 5 minutes

0 5-10 ** * command # run once every hour between 5:00am and 10:00am

@reboot command # run every time the server is rebooted

Automatically Running Shell Scripts

Instead of issuing the crontab command, you may use some files that will
automatically execute your script on a daily, weekly and monthly basis. You
are only required to place the command, commands, or shell script / program
pathname in that file (i.e. no rules) to run for that periodic cycle.

Some of those files include:

letci/cron.daily

letclcron.weekly

/etc/cron.monthly

Automatically Running Shell Scripts

In lab5, you will download and schedule a script on a periodic basis to
monitor for how hard disk space, and automatically send e-mail to the root
user. This script uses the awk command to manipulate text.

awk is a very useful command for report generation, text file repair, or text
and floating-point decimal manipulation. The command mimics a C program,
with braces { } that surround the action to perform based on records from a
database file matching either test conditions, regular expressions, etc. Fields
appear as numbers with $.

Examples:
awk {print}' data-file.txt

awk -F";" '{print $5,$3}' data-file.txt
awk -F"," '$4 >= 10000 {print $1, $2}' salary.txt

LA e

.“';;-1

N
:.’-‘. ‘

‘..‘..-'ﬂmm

Linux System Admin

Monitoring Hard Disk Space
Using erontabs =
The awk _mggd qassssciace™

_____,..-I-"
AN .

PR 5 St

Linux System Admin

.....
supmidscth

Monitoring Hard Disk Space

