
OSL640: INTRODUCTION TO OPEN SOURCE SYSTEMS

WEEK 10 LESSON 1

INTRODUCTION TO SHELL SCRIPTING /

CREATING SHELL SCRIPTS /

SHELL VARIABLES

PHOTOS AND ICONS USED IN THIS SLIDE SHOW ARE LICENSED UNDER CC BY-SA

https://creativecommons.org/licenses/by-sa/3.0/

LESSON 1 TOPICS

Shell Scripts

• Definition / Purpose

• Considerations When Creating Shell Scripts /

• Comments / She-bang line / echo command

• Creating Shell Scripts / Running Shell Scripts / Demonstration

Shell Variables

• Definition / Purpose

• Environment Variables / User Defined Variables / read command

• Demonstration

Perform Week 10 Tutorial

• Investigation 1

• Review Questions (Questions Part A 1 – 3 , Part B Walk-Thru #1)

CREATING SHELL SCRIPTS

Definition

A shell script is a computer program designed to be run by the Unix shell,

a command-line interpreter.

Typical operations performed by shell scripts include

file manipulation, program execution, and printing text.

Reference: https://en.wikipedia.org/wiki/Shell_script

https://en.wikipedia.org/wiki/Shell_script

CREATING SHELL SCRIPTS

Considerations When Creating Shell Scripts

The reason to create shell scripts is to automate the execution of

commonly issued Linux commands, shell operations, math

calculations as well as Logic / Loop operations.

Prior to the creation of the shell script file, you should plan

the shell script and list steps that you want to accomplish.

Those sequence of steps can then be used to create your shell script.

CREATING SHELL SCRIPTS

Considerations When Creating Shell Scripts

Once you have planned your shell script you need to create a shell script file via

a text editor that will contain Linux commands.

When creating a shell script, avoid using filenames of existing

Linux commands. You can use the which command to see if the filename is
recognized as a Unix/Linux command: (e.g. which shell-script-name)

Adding an extension to your shell script filename will help to

identify the type of shell that the shell script was designed to run.

Examples:

clean-directory.bash

copy-directory-structure.csh

CREATING SHELL SCRIPTS

The Shebang Line

The # symbol makes the shell ignores running text after this symbol so that text can

be used to provide information of how the shell script works.

This is a comment

The she-bang line is a special comment at top of your shell script to run

a shell script within a specific shell.

Example:

#!/bin/bash

The shebang line must appear on the first line and at the beginning of the line,

otherwise, it will be treated as a regular comment and ignored.

CREATING SHELL SCRIPTS

The Shebang Line

Since Linux shells have evolved over a period of time, using a she-bang line forces

the shell script to run in a specific shell, which could prevent errors

in case an older shell does not recognize newer features from recent shells.

You can use the which command to determine the full pathname of the shell.

which bash

/bin/bash

CREATING SHELL SCRIPTS

Displaying Text with the echo Command

When creating shell scripts, it is useful to display text to prompt

the user for data, display results or notify the user of incorrect

usage of the shell script.

The echo command is used to display text.

To prevent problems with special characters, it is recommended to

use double-quotes which will allow the values of variables to be

displayed.

Example:

echo “My username is: $USER”

RUNNING A SHELL SCRIPT

Running Shell Scripts

In order to run your shell script by name, you need to first

assign execute permissions for the user.

To run your shell script, you can issue the shell script’s pathname

using a relative, absolute, or relative-to-home pathname

Examples:

chmod u+x myscript.bash

./myscript.bash

/home/username/myscript.bash

~/myscript.bash

FYI: You can run a shell script without execute permissions by

issuing the shell command followed by the shell script’s pathname.

Example:

bash ~murray.saul/scripts/week10-check-1

You can add the current directory that contains the shell script so

it can be issued only by filename (not pathname).

Example:

PATH=$PATH:.

To be persistent on new shell instances, setting the PATH

environment variable would need to be added in your profile

(start-up) file (discussed in a later lesson).

INSTRUCTOR DEMONSTRATION

Task:

Create a Bash Shell script to clear the screen and then display all users

that are currently logged onto the system.

SHELL SCRIPTING

Variables

Variables are used to store information to be referenced and

manipulated in a computer program. They also provide a way of labeling data

with a descriptive name, so our programs can be understood more clearly by

the reader and ourselves…

…It is helpful to think of variables as containers that hold information.

Their sole purpose is to label and store data in memory. This data can

then be used throughout your program.

Reference: https://launchschool.com/books/ruby/read/variables

https://launchschool.com/books/ruby/read/variables

SHELL SCRIPTING

Using Variables

Shell variables are classified into two groups:

System (shell) variables:

Describes the OS system’s working environment which can be used in a shell script.

User-created variables:

Customized variables created by the programmer for use in a shell script.

The name of a variable can be any sequence of letters and numbers,

but it must NOT begin with a number!

SHELL SCRIPTING

Environment Variables

Shell environment variables define the working environment while in your shell.

Some of these variables are displayed in the table below and its value can be viewed

by issuing the following pipeline command: set | more

Variable Name Purpose

PS1 Primary shell prompt

PWD Absolute path of present working directory

HOME Absolute path to user's home

PATH List of directories where commands / programs are located

HOST Host name of the computer

USER Name of the user logged in

SHELL Name (type) of current shell used

SHELL SCRIPTING

Environment Variables

Placing a dollar sign $ before a variable name will cause the

variable to expand to the value contained in the variable.

Examples:

echo “My current location is: $PWD”

who | grep $USER

echo $HOST

SHELL SCRIPTING

User Defined (Created) Variables

User-defined variables are variables which can be created by

the user and exist in the session.

Reference: https://mariadb.com/kb/en/user-defined-variables/

You assign a value by using the equal sign (without spaces)

name=value

If a variable’s value contain spaces or tabs,

it should be surrounded by quotes

fullName="David G Ward"

https://mariadb.com/kb/en/user-defined-variables/

SHELL SCRIPTING

User Defined Variables

There are a few methods to remove a variable’s value:

variableName=

or

unset variableName

Examples:

customerName=

unset userAge

CREATING SHELL SCRIPTS

Prompting User for Input to Store in a Variable:

The echo command with the –n option will display text without the newline character.

The read command pauses and waits for a user to enter data and then stores the

enter data into a variable when the user presses the ENTER key.

Example:

echo –n “Enter your age: ”

read age

echo “Your age is $age”

For Bash shell scripts, the read command with the –p option prompts

the user for data without requiring the echo command.

Example:

read –p “Enter your age: ” age

echo “Your age is $age”

SHELL SCRIPTING

User Defined (Created) Variables

Issuing the readonly command after setting the variable’s value prevents

the user from changing the value of the variable while the shell script is

running or during the duration of your shell session.

Examples:

readonly name

readonly phone="123-4567”

INSTRUCTOR DEMONSTRATION

Task1:

Write a Bash shell script to display the following message using an environment variable

so it will work in any user’s terminal if the shell script was issued:

My username is: (your-username)

Task2:

Write a Bash shell script to prompt the user for their full name and prompt the user for their age to

be stored in user-defined variables. Display the following output using the values of those variables:

Enter your Full Name: (your full name)

Enter your Age: (your age)

Hello, my name is (your full name), and I am (your age) years old.

SHELL SCRIPTING

Getting Practice

To get practice perform Week 10 Tutorial:

• INVESTIGATION 1: CREATING A SHELL SCRIPT

• INVESTIGATION 2: USING VARIABLES IN SHELL SCRIPTS

• LINUX PRACTICE QUESTIONS (Part A 1 – 3 , Part B Walk-Thru #1)

https://wiki.cdot.senecacollege.ca/wiki/Tutorial_10_-_Shell_Scripting_-_Part_1#INVESTIGATION_1:_CREATING_A_SHELL_SCRIPT
https://wiki.cdot.senecacollege.ca/wiki/Tutorial_10_-_Shell_Scripting_-_Part_1#INVESTIGATION_2:_USING_VARIABLES_IN_SHELL_SCRIPTS
https://wiki.cdot.senecacollege.ca/wiki/Tutorial_10_-_Shell_Scripting_-_Part_1#LINUX_PRACTICE_QUESTIONS

OSL640: INTRODUCTION TO OPEN SOURCE SYSTEMS

WEEK 10: LESSON 2

POSITIONAL PARAMETERS /

COMMAND SUBSTITUTION / MATH OPERATIONS

TESTING CONDITIONS / CONTROL FLOW STATEMENTS (LOGIC / LOOPS)

PHOTOS AND ICONS USED IN THIS SLIDE SHOW ARE LICENSED UNDER CC BY-SA

https://creativecommons.org/licenses/by-sa/3.0/

LESSON 2 TOPICS

Positional Parameters

• Definition / Purpose / Usage / Demonstration

Command Substitution / Math Operations

• Definition / Purpose / Usage / Demonstration

Control Flow Statements

• Definition / Purpose

• Exit Status $? / Testing Conditions (test) / Demonstration

• Control Flow Statements (if, if-else, for) / Demonstration

Perform Week 10 Tutorial

• Investigation 2

• Review Questions (Questions Part A #4 , Part B Walk-Thru #2)

POSITIONAL PARAMETERS

A positional parameter is a variable within a shell program;

its value is set from an argument specified on the command line

that invokes the program.

Positional parameters are numbered and are referred to

with a preceding ''$’’: $1, $2, $3, and so on.

Reference: http://osr600doc.xinuos.com/en/SDK_tools/_Positional_Parameters.html

arg1 arg2 arg3 … argN

http://osr600doc.xinuos.com/en/SDK_tools/_Positional_Parameters.html

POSITIONAL PARAMETERS

Assigning Values as Positional Parameters

There are two methods to assign values as positional parameters:

• Use the set command inside a shell script with values as arguments

• Run a shell script with arguments (i.e. like a command)

arg1 arg2 arg3 … argN

POSITIONAL PARAMETERS

Using the set command:

set apples oranges bananas

You place a dollar sign ($) prior to the number

corresponding to the position of the argument

Examples:

echo $1

echo $2

echo $3

arg1 arg2 arg3 … argN

POSITIONAL PARAMETERS

Running a Shell Script with Arguments:

You would use positional parameters in your shell script that would

expand the positional parameters with its stored value.

Here are the contents of the shell script called myScript.bash:

#!/bin/bash

echo “First argument is $1”

echo “Second argument is $2”

You would then issue the myScript.bash shell script with arguments

that would be used within the shell script. For Example:

./mySript.bash apples oranges

arg1 arg2 arg3 … argN

POSITIONAL PARAMETERS

The positional parameter $0 refers to either the name of shell

where command was issued, or name of shell script file being executed.

If using positional parameters greater than 9,
you need to include number within braces { }

Examples:

echo $0

echo ${10}

arg1 arg2 arg3 … argN

POSITIONAL PARAMETERS

The shift command can be used with positional parameters to

move positional parameters to the left by one or more positions.

Examples:

shift

shift 2

arg1 arg2 arg3 … argN

SPECIAL PARAMETERS

There are a group of special parameters that can be used for shell scripting.

A few of these special parameters and their purpose are displayed in the table below.

$* $# $?

Parameter Purpose

$* Display all positional parameters.

“$*” Containing values of all arguments separated by a single space

“$@” Multiple double-quoted strings, each containing the value of one argument

$# Represents the number of parameters

(not including the script name)

$? Exit Status of previous command (discussed in next lesson)

POSITIONAL AND SPECIAL PARAMETERS

Task:

Write a Bash shell script that accepts arguments from the shell script filename when

executed (i.e., just like a regular Linux command).

The Bash Shell script will clear the screen and then display the following

text (using special parameters):

Number of arguments are: (number of positional parameters)

The arguments are: (displays of all positional parameters)

COMMAND SUBSTITUTION

Command substitution is a facility that allows a command to be run and its

output to be pasted back on the command line as arguments to another command.

Reference: https://en.wikipedia.org/wiki/Command_substitution

Usage:

command1 $(command2) or command1 `command2`

Examples:

file $(ls)

mail –s “message” $(cat email-list.txt) < message.txt

echo "The current directory is $(pwd)"

echo "The current hostname is $(hostname)"

echo "The date is: $(date +'%A %B %d, %Y')"

https://en.wikipedia.org/wiki/Command_substitution

COMMAND SUBSTITUTION

Task:

Write a Bash shell script that sets all files in your current directory as positional parameters.

Use command substitution to store all files in your current directory as positional parameters.

The Bash Shell script will clear the screen and then display the following text

(using special parameters):

Number of files in current directory are:

(number of positional parameters)

Here are the filenames:

(displays of all positional parameters)

MATH OPERATIONS

Performing math calculations can be an important element in shell scripting.

A problem you may experience in shell scripting (as opposed to other programming languages)

is that in shell scripting, all characters (including numbers) are stored as text.

This can create problems when performing math operations.

Demonstration:

num1=5;num2=10

echo “$num1+$num2”

5+10

echo “$num1-$num2”

5-10

echo “$num1*$num2”

5*10

MATH OPERATIONS

In order to make math operations work in a Linux shell or shell script,

you need to convert numbers stored as text into binary numbers.

We can do this by using using a math construct consisting

two pairs of round brackets (())

Examples:

num1=5;num2=10

echo “$(($num1 + $num2))”

15

echo “$((num1-num2))”

-5

((product=num1*num2))

echo “$product”

50

MATH OPERATIONS

Additional math operators are shown below.

Examples:

num1=2;num2=3

echo $((num1/num2))

0

echo $((num1%num2))

3

echo $((num1**num2))

8

echo $((num2++))

4

echo $((num1--))

1

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

% Remainder

** Exponentiation

++ Increment (increase by 1)

-- Decrement (decrease by 1)

MATH OPERATIONS

Task 1:

Write a Bash shell script that prompts the user for the sale price of an item

and the number of items purchased.

The shell script will display the total amount (eg. price x number of items) of the sale.

For simplicity, you can assume prices are just integers.

Task 2:

Write a Bash shell script that prompts the user prompts the user for two numbers.

The shell script will then show the results from addition, subtraction, multiplication

and division of those numbers.

CONTROL FLOW STATEMENTS

So far, we have created Bash Shell Scripts that execute

Linux commands in a fixed sequence.

Although those type of scripts can be useful, we can use

control flow statements that will control the sequence

of the running script based on various situations or conditions.

Control Flow Statements are used to make your shell scripts

more flexible and allow them to adapt to changing situations.

CONTROL FLOW STATEMENTS

The $? (exit status) Special Parameter

The special parameter $? is used to determine the exit status of the previously issued

Linux command or Linux pipeline command.

The exit status will either display a zero (representing TRUE)

or a non-zero number (representing FALSE).

This method can be used with control-flow statements to change the sequence

of your shell script execution. We will apply this when we discuss advanced

shell scripting in two weeks.

Examples:

PWD

echo $?

pwd

echo $?

CONTROL FLOW STATEMENTS

The test Linux Command

The test Linux command is used to test conditions to see if they are TRUE

(i.e. value zero) or FALSE (i.e. value non-zero).

This method can also be used with control-flow statements to

change the sequence of your shell script execution.

Examples:

name=“Murray”

test $name = “Murray”

echo $?

test $name = “David”

echo $?

CONTROL FLOW STATEMENTS

Numerical Comparisons with test Command

You CANNOT use the > or < symbols when using the test command

since those are redirection symbols.

You need to use options when performing numerical comparisons.

Refer to the table below for test options and their purposes.

Option Purpose

-eq Equal to

-ne Not equal to

-lt , -le Less than, Less than or equal to

-gt, -ge Greater than, greater than or equal to

CONTROL FLOW STATEMENTS

The test Linux Command: Additional Options

There are other comparison options that can be used with the test command such

as testing to see if a regular file or if directory pathname exists, or if the regular

file pathname is non-empty.

Refer to the table below for some of those additional options.

Option Purpose

-f file_pathname Regular filename exists

-d file_pathname Directory filename exists

-s file_pathname Regular filename is non-empty

-w file_pathname file exists / write permission is granted

CONTROL FLOW STATEMENTS - LOGIC

Logic Statements

A logic statement is used to determine which Linux commands to be

executed based on the result of a test condition or command

(i.e. TRUE if zero value) or FALSE (if non-zero value).

There are several logic statements, but we will just concentrate on

if statement and the if-else statements.

CONTROL FLOW STATEMENTS - LOGIC

if Control Flow Statement

If the test command returns a TRUE value,

then the Linux Commands between then and fi statements are executed.

If the test command returns a FALSE value,

the if statement is by-passed.

Usage:

if test condition

then

command(s)

fi

CONTROL FLOW STATEMENTS - LOGIC

Using [] to Represent test Command

A set of square brackets [] can be used to represent the test command.

NOTE: There must be spaces between the square brackets

and the test condition.

Example:

num1=5

num2=10

if [$num1 –lt $num2]

then

echo “Less Than”

fi

CONTROL FLOW STATEMENTS - LOGIC

if-else Control Flow Statement

If the test condition returns a TRUE value, then the Linux Commands

between the then and else statements are executed.

If the test returns a FALSE value, then the the Linux Commands

between the else and fi statements are executed.

Usage:

if test condition

then

command(s)

else

command(s)

fi

CONTROL FLOW STATEMENTS - LOGIC

Instructor Demonstration

Task1:

Write a Bash shell script that will first set a variable called course to the value

uli101 (lowercase). Then the shell script will clear the screen and prompt the user

for the current course code. Use logic that if the user’s entry does match the value

contained in the variable course, the following text is displayed:

You are correct

Task2:

Modify the previous Bash Shell script to display the alternative message if the user’s

entry does NOT match the value (stored in the variable called course)

then the following alternative text is displayed:

You are incorrect

CONTROL FLOW STATEMENTS - LOOPS

Loop Statements (iteration)

A loop statement is a series of steps or sequence of statements executed repeatedly

zero or more times satisfying the given condition.

Reference:

https://www.chegg.com/homework-help/definitions/loop-statement-3

https://www.chegg.com/homework-help/definitions/loop-statement-3

CONTROL FLOW STATEMENTS - LOOPS

The for Loop

There are several loops, but we will look at the for loop using a list.

Usage:

for item in list

do

command(s)

done

The variable item will hold one item from the list every time

the loop iterates (repeats) the commands between the do and

done reserved words.

A list can consist of a series of arguments (separated by spaces)

or supplied by command substitution

CONTROL FLOW STATEMENTS - LOOPS

The for Loop

Example:

for x in apples oranges bananas

do

echo “The item is: $x”

done

CONTROL FLOW STATEMENTS - LOOPS

Task:

Write a Bash shell script that sets all files in your current directory

as positional parameters. Use command substitution to store

all files in your current directory as positional parameters.

The Bash Shell script will clear the screen and then display the following

text (using special parameters). Use a for loop to display each filename

on a SEPARATE line using a for loop:

Number of files in current directory are:

(number of positional parameters)

Here are the filenames:

(displays each positional parameters on a SEPARATE line)

HOMEWORK

Getting Practice

To get practice perform Week 10 Tutorial:

• INVESTIGATION 3: COMMAND SUBSTITUTION / MATH OPERATIONS

• INVESTIGATION 4: USING CONTROL FLOW STATEMENTS IN SHELL SCRIPTS

• LINUX PRACTICE QUESTIONS (Part A 4 , Part B Walk-Thru #2)

https://wiki.cdot.senecacollege.ca/wiki/Tutorial_10_-_Shell_Scripting_-_Part_1#INVESTIGATION_3:_COMMAND_SUBSTITUTION_.2F_MATH_OPERATIONS
https://wiki.cdot.senecacollege.ca/wiki/Tutorial_10_-_Shell_Scripting_-_Part_1#INVESTIGATION_4:_USING_CONTROL_FLOW_STATEMENTS
https://wiki.cdot.senecacollege.ca/wiki/Tutorial_10_-_Shell_Scripting_-_Part_1#LINUX_PRACTICE_QUESTIONS

