
OSL640: INTRODUCTION TO OPEN SOURCE SYSTEMS 

WEEK 11 LESSON 1

THE SED UTILITY 

PHOTOS AND ICONS USED IN THIS SLIDE SHOW ARE LICENSED UNDER CC BY-SA

https://creativecommons.org/licenses/by-sa/3.0/


LESSON 1  TOPICS

The sed Utility

• Definition / Purpose 

• Usage

• Using sed as a Filter with Pipeline Commands

• Demonstration

Perform Week 11  Tutorial

• Investigation 1

• Review Questions (Parts A and B)



SED UTILITY

Purpose

The sed command stands for Streaming Editor.

The sed command is used to manipulate text that is contained in a 

text file or via a pipeline command.

Although the sed command does NOT change content inside a text file, this 

command acts like a “on-the-fly” text editor to display modified text 

on the screen, redirect to a file or act as a filter within a pipeline command.



SED UTILITY

Usage: 

sed [-n] 'address instruction' filename 

How it Works:

• The sed command reads all lines in the input file and will be exposed to the expression

(i.e. area contained within quotes) one line at a time.

• The expression can be within single quotes or double quotes.

• The expression contains an address (match condition) and an instruction (operation).

• If the line matches the address, then it will perform the instruction.

• Lines will display be default unless the –n option is used to suppress default display



SED UTILITY

Usage: 

sed [-n] 'address instruction' filename 

Addresses:

• Can use a line number, to select a specific line (for example: 5)

• Can specify a range of line numbers (for example: 5,7)

• Regular expressions are contained within forward slashes

(e.g. /regular-expression/)

• Can specify a regular expression to select all lines that match
a pattern  (e.g /^[0-9].*[0-9]$/) 

• If NO address is present, the instruction will apply to ALL lines



SED UTILITY

Usage: 

sed [-n] 'address instruction' filename 

Common Instructions:

p   Print lines that match the address (commonly used with -n option)

d   Omit (delete) display of lines that match the address

q   Print lines including line that matches address and then quit processing

s    Substitute text to replace a matched regular expression (similar search and replace)



SED UTILITY

Example 1

The following sed command line displays all lines in the readme file that 

contain the word line (all lowercase).

In addition, because there is no –n option, sed displays all the lines of input. 

As a result, sed displays the lines that contain the word line twice.

sed '/line/ p' readme 

Line one. 

The second line. 

The second line. 

The third. 

This is line four. 

This is line four. 

Five. 

This is the sixth sentence. 

This is line 7. 

This is line 7. 

Eight and last.

Unless you instruct it not to, sed sends all lines, selected or not to 

standard output. 

When you use the –n option on the command line, sed sends only 

those lines to stdout that you specify with the print p command



SED UTILITY

Example 2

The following sed command displays contents of a file 

from a range of line numbers. 

sed -n '3,6 p' readme 

The third. 

This is line four. 

Five. 

This is the sixth sentence.

The print p instruction using the –n option 

only displays lines 3 through 6.



SED UTILITY

Example 3

The following sed command displays the first five lines of text just as a 

head -5 lines command would.

sed '5 q' readme 

Line one. 

The second line. 

The third. 

This is line four. 

Five.

The sed command prints all lines, beginning from the first line,

In this example, sed will terminate when line 5 is matched.



SED UTILITY

Example 4

The following sed command displays a TAB character

for lines contained in a file. 

$ sed 's/^./\t&/' readme 

Line one. 

The second line. 

The third. 

etc...

The regular expression in the following instruction (^.) matches 

one character at the beginning of every line that is not empty. 

The replacement string (between the second and third forward 

slashes) contains a backslash escape sequence that represents 
a TAB character (\t) followed by an ampersand (&). 

The ampersand character (&) takes on the value of what the 

regular expression matched.



SED UTILITY

Example 5

The following sed command uses a regular expression

and the quit instruction.

sed '/[0-9][0-9][0-9]$/ q' myfile

sfun 11 

cool 12 

Super 12a 

Happy112

The regular expression in the following expression 
[0-9][0-9][0-9]$ matches three digits at the end of a line.

The command will process the file, one-line at a time, beginning at 

the top and (by default) outputting each line to standard output. 

Once the regular expression is matched, it will display the matched 

line and stop processing the sed command.



SED UTILITY

Using sed Utility as a Filter with Pipeline Commands

Although sed can be used as a streaming editor for text contained within a text file, 

the sed command can also be used as a filter within a pipeline command.

Examples

ls | sed 's/^[0-9]/x/g’

echo “I like Linux” | sed 's/ /,/g'



SED UTILITY

Instructor Demonstration

Your professor will demonstrate additional examples using the 

sed utility.

Pathname of cars database: ~osl640/cars.txt

Commands

sed -n '3,6 p' cars.txt

sed '5 d' cars.txt

sed '5,8 d' cars.txt

sed '5 q' cars.txt

sed -n '/chevy/ p' cars.txt

sed '/chevy/ d' cars.txt

sed '/chevy/ q' cars.txt

sed 's/[0-9]/*/' cars.txt

sed 's/[0-9]/*/g' cars.txt

sed '5,8 s/[0-9]/*/' cars.txt

sed 's/[0-9][0-9]*/*** & ***/' cars.txt

plym fury 77 73 2500 

chevy nova 79 60 3000 

ford mustang 65 45 17000 

volvo gl 78 102 9850 

ford ltd 83 15 10500 

Chevy nova 80 50 3500 

fiat 600 65 115 450 

honda accord 81 30 6000 

ford thundbd 84 10 17000 

toyota tercel 82 180 750 

chevy impala 65 85 1550 

ford bronco 83 25 9525

Contents of cars database file:



SED UTILITY

Getting Practice

To get practice perform Week 11  Tutorial:

• INVESTIGATION 1: USING THE SED UTILITY

• LINUX PRACTICE QUESTIONS (Parts A and B)

https://wiki.cdot.senecacollege.ca/wiki/Tutorial_11_-_SED_%26_AWK#INVESTIGATION_1:_USING_THE_SED_UTILITY
https://wiki.cdot.senecacollege.ca/wiki/Tutorial_11_-_SED_%26_AWKLINUX_PRACTICE_QUESTIONS


OSL640: INTRODUCTION TO OPEN SOURCE SYSTEMS

WEEK 11: LESSON 2

THE AWK UTILITY

PHOTOS AND ICONS USED IN THIS SLIDE SHOW ARE LICENSED UNDER CC BY-SA

https://creativecommons.org/licenses/by-sa/3.0/


LESSON 2  TOPICS

The awk Utility

• Definition / Purpose

• Usage

• Using awk as a Filter with Pipeline Commands

• Demonstration

Perform Week 11  Tutorial

• Investigation 2

• Review Questions (Parts C and D)



AWK UTILITY

Definition / Purpose

Awk is mostly used for pattern scanning and processing. It searches one or more files 

to see if they contain lines that matches with the specified patterns and then performs 

the associated actions.

Reference: https://www.geeksforgeeks.org/awk-command-unixlinux-examples/

The awk command is useful for reading database files to produce reports.

https://www.geeksforgeeks.org/awk-command-unixlinux-examples/


AWK UTILITY

Usage

awk [-F] 'selection _criteria {action}’ file-name 

How it Works:

• The awk command reads all lines in the input file and will be exposed to the expression

(contained within quotes) for processing.

• The expression (contained in quotes) represents selection criteria, 
and action to execute contained within braces {}

• if selection criteria is matched, then action (between braces) is executed.

• The –F option can be used to specify the default field delimiter (separator) character
eg. awk –F”;”   (would indicate a semi-colon delimited input file)



AWK UTILITY

Usage

awk [-F] 'selection _criteria {action}’ file-name 

Selection Criteria:

• You can use a regular expression, enclosed within slashes, as a pattern. 

For example: /pattern/

• The ~ operator tests whether a field or variable matches a 

regular expression.

For example:   $1 ~ /^[0-9]/

• The !~ operator tests for no match.

For example: $2 !~ /line/



AWK UTILITY

Usage

awk [-F] 'selection _criteria {action}’ file-name 

Selection Criteria:

• You can perform both numeric and string comparisons using 
relational operators ( > , >= , < , <= , == , != ).

• You can combine any of the patterns using the Boolean operators 
|| (OR) and && (AND).

• You can use built-in variables (like NR or "record number" 

representing line number) with comparison operators.

For example: NR >=1 && NR <= 5 



AWK UTILITY

Usage

awk [-F] 'selection _criteria {action}’ file-name 

Action (execution):

• Action to be executed is contained within braces {}

• The print command can be used to display text (fields).

• You can use parameters like $1,$2 to represent first field, 

second field, etc. The parameter $0 represents all fields 

within a record (line).

• You can use built-in variables (like NR or "record number" 

representing line number

eg. {print NR,$0}   (will print record number, then entire record)



AWK UTILITY

Example 1

cat data.txt

Saul Murray professor

David Ward retired

Fernades Mark professor

awk '{print}' data.txt

Saul Murray professor

David Ward retired

Fernades Mark professor

If no pattern is specified, awk selects all 

lines in the input



AWK UTILITY

Example 2

cat data.txt

Saul Murray professor

David Ward retired

Fernades Mark professor

awk '/^[F-Z]/ {print}' data.txt

Saul Murray professor

Fernades Mark professor

You can use a regular expression, enclosed 

within slashes, as a pattern.

In this case, the pattern is matched at the 

BEGINNING of each line (record) read 

from the input file.



AWK UTILITY

Example 3

cat data.txt

Saul Murray professor

David Ward retired

Fernades Mark professor

awk '/^[F-Z]/' data.txt

Saul Murray professor

Fernades Mark professor

If no action is specified, awk copies the 

selected lines to standard output



AWK UTILITY

Using Variables with awk Utility

You can use parameters which represent fields within records (lines) within the 

expression of the awk utility.

The parameter $0 represents all of the fields contained in the record (line).

The parameters $1, $2,$3 … $9 represent the first, second and third  to the 9th

fields contained within the record. Parameters greater than nine requires the value of 

the parameter to be placed within braces 
(for example:  ${10},${11},${12}, etc.)

Unless you separate items in a print command with a comma,  

awk catenates them.



AWK UTILITY

Example 4

cat data.txt

Saul Murray professor

David Ward retired

Fernades Mark professor

awk '$1 ~ /^[F-Z]/ {print}' data.txt

Saul Murray professor

Fernades Mark professor

awk '$3 ~ /retired/ {print}' data.txt

David Ward retired

The parameters $1, $2, $3 … $9

represent the first, second and third  to 

the 9th fields contained within the record.

The ~ operator tests whether a field or 

variable matches a regular expression 



AWK UTILITY

Example 5

cat data.txt

Saul Murray professor

David Ward retired

Fernades Mark professor

awk '$3 !~ /retired/ {print}' data.txt

Saul Murray professor

Fernades Mark professor

The !~ operator tests for no match.



AWK UTILITY

Example 6

cat customer.dat

A100 Acme-Inc. 5400

R100 Rain-Ltd. 11224

T100 Toy-Inc. 3413

awk '$3 > 10000 {print}' customer.dat

R100 Rain-Ltd. 11224

awk '$3 <= 6000 {print}' customer.dat

A100 Acme-Inc. 5400

T100 Toy-Inc. 3413

Using relational operators with 

the awk command.



AWK UTILITY

Example 7

cat customer.dat

A100 Acme-Inc. 5400

R100 Rain-Ltd. 11224

T100 Toy-Inc. 3413

awk '$3 >= 5000 && $3 <= 10000 {print}' customer.dat

A100 Acme-Inc. 5400

awk '$3 <= 5000 || $3 >= 10000 {print}' customer.dat

R100 Rain-Ltd. 11224

T100 Toy-Inc. 3413

Using the && and ||

conditional operators with 

the awk command.



AWK UTILITY

Example 8

cat customer.dat

A100 Acme-Inc. 5400

R100 Rain-Ltd. 11224

T100 Toy-Inc. 3413

awk '$3 > 10000 {print $1,$2}' customer.dat

R100 Rain-Ltd.

awk '$2 ~ /Acme-Inc./ {print $3}' customer.dat

5400

Using parameters to 

specify fields with print 

command to display 

output.



AWK UTILITY

Other Variables for awk Utility

The table below show other variables that can be used with the awk command.

• FILENAME   Name of the current input file

• FS      Input field separator (default: SPACE or TAB)

• NF     Number of fields in the current record

• NR     Record number of the current record

• OFS   Output field separator (default: SPACE)

• ORS   Output record separator (default: NEWLINE)

• RS       Input record separator (default: NEWLINE)



AWK UTILITY

Example

cat customer.dat

A100 Acme-Inc. 5400

R100 Rain-Ltd. 11224

T100 Toy-Inc. 3413

awk '{print NR,$0}' customer.dat

1 A100 Acme-Inc. 5400

2 R100 Rain-Ltd. 11224

3 T100 Toy-Inc. 3413

awk 'NR ==2 {print}' customer.dat

R100 Rain-Ltd. 11224

awk 'NR > 1 && NR < 5{print}' customer.dat

R100 Rain-Ltd. 11224

T100 Toy-Inc. 3413

Using NR (record number) 

variable with the awk utility



AWK UTILITY

Using awk Utility as a Filter

Although awk can be used as a streaming editor for text contained within a text 

file,  awk can also be used as a filter using a pipeline command.

Examples

ls | awk ‘{print $1,$2}’



AWK UTILITY

Instructor Demonstration

Your instructor will demonstrate additional examples of 

using the awk utility.



AWK UTILITY

Getting Practice

To get practice to perform Week 11  Tutorial:

• INVESTIGATION 2: USING THE AWK UTILITY

• LINUX PRACTICE QUESTIONS (Parts C and D)

https://wiki.cdot.senecacollege.ca/wiki/Tutorial_11_-_SED_%26_AWK#INVESTIGATION_2:_USING_THE_AWK_UTILITY
https://wiki.cdot.senecacollege.ca/wiki/Tutorial_11_-_SED_%26_AWK#LINUX_PRACTICE_QUESTIONS

