OSL640: INTRODUCTION TO OPEN SOURCE SYSTEMS

WEEK 4: LESSON I

DATA REPRESENTATION NUMBERING CONVERSION

PHOTOS AND ICONS USED IN THIS SLIDE SHOW ARE LICENSED UNDER CC BY-SA

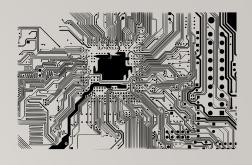
LESSON I TOPICS

Data Representation

- Purpose
- Decimal, Binary, Octal, Hexadecimal Numbering Systems
- Numbering Conversion Methods
- Demonstration

Perform Week 4 Tutorial

- Investigation I
- Review Questions (Questions 1 − 5)


Data Representation

Digital computers are electronic devices that contain a series of circuits and voltage levels that can store / represent data.

Binary numbers can represent those series of circuits with voltage levels. Those binary numbers (0's and 1's) are combined in a sequence to form a **byte**. Bytes are used to represent **numbers** or **characters**.

It is the job of the computer program to understand if those bytes (series of o's and/or I's) represent numbers or characters (eg. in **C programming**, declaring a variable with a **data type**)

Understanding how the computer stores numbers and characters can be useful when **administrating computer systems** and **creating programs** to be run on computer systems.

DEC.		BINARY								
0	0	0	0	0	0	0	0	0	0	
1	0	0	0	0	0	0	0	1	1	
2	0	0	0	0	0	0	1	0	2	
3	0	0	0	0	0	0	1	1	3	
4	0	0	0	0	0	1	0	0	4	
5	0	0	0	0	0	1	0	1	5	
6	0	0	0	0	0	1	1	0	6	
7	0	0	0	0	0	1	1	1	7	
8	0	0	0	0	1	0	0	0	8	
9	0	0	0	0	1	0	0	1	9	
10	0	0	0	0	1	0	1	0	Α	
11	0	0	0	0	1	0	1	1	В	
12	0	0	0	0	1	1	0	0	С	
13	0	0	0	0	1	1	0	1	D	
14	0	0	0	0	1	1	1	0	Е	
15	0	0	0	0	1	1	1	1	F	
16	0	0	0	1	0	0	0	0	10	
17	0	0	0	1	0	0	0	1	11	
				**	•••					
				1						
253	1	1	1	1	1	1	0	1	FD	
254	1	1	1	1	1	1	1	0	FE	
255	1	1	1	1	1	1	1	1	FF	

	0	1	2	3	4	5	6	7
0	NUL	DLE	space	0	@	Р	,	р
1	SOH	DC1 XON	1	1	Α	Q	а	q
2	STX	DC2	"	2	В	R	b	r
3	ETX	DC3 XOFF	#	3	С	S	С	s
4	EOT	DC4	\$	4	D	Т	d	t
5	ENQ	NAK	%	5	Е	U	е	u
6	ACK	SYN	&	6	F	V	f	٧
7	BEL	ЕТВ	i	7	G	W	g	W
8	BS	CAN	(8	Н	X	h	×
9	HT	EM)	9	-1	Υ	i	У
Α	LF	SUB	*	1	J	Z	j	Z
В	VT	ESC	+	1	K	[k	{
С	FF	FS	- 1	<	L	1	- 1	-1
D	CR	GS	-	=	М]	m	}
E	so	RS		>	N	A	n	~
F	SI	US	1	?	0	-	0	del

Numbering Conversion:

Computers have evolved over time. During that time, humans have interfaced with the computer by *binary* numbers, or by using **short-cuts** such as **octal** or **hexadecimal** numbers.

Computer Networking / Support Specialists and Computer Programmers occasionally need to convert between numbering systems:

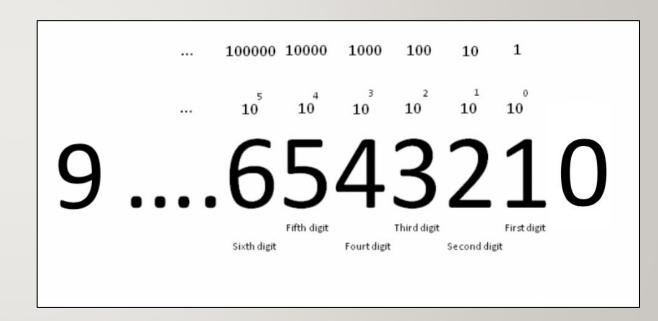
- Converting decimal numbers to binary number for URLs (subnetting)
- Converting decimal numbers to hexadecimal numbers to format webpages (with web-safe colours)
- Converting binary numbers to octal numbers for setting file permissions in Unix/Linux

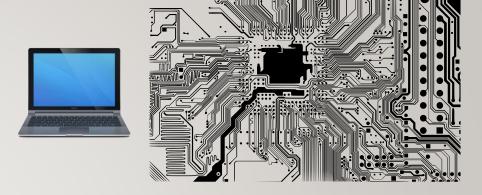
Before performing numbering conversions, we need to better understand the decimal, binary, octal and hexadecimal numbering systems.

DEC.			E	BIN.	AR'	Y			HEX.
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	2
3	0	0	0	0	0	0	1	1	3
4	0	0	0	0	0	1	0	0	4
5	0	0	0	0	0	1	0	1	5
6	0	0	0	0	0	1	1	0	6
7	0	0	0	0	0	1	1	1	7
8	0	0	0	0	1	0	0	0	8
9	0	0	0	0	1	0	0	1	9
10	0	0	0	0	1	0	1	0	Α
11	0	0	0	0	1	0	1	1	В
12	0	0	0	0	1	1	0	0	С
13	0	0	0	0	1	1	0	1	D
14	0	0	0	0	1	1	1	0	E
15	0	0	0	0	1	1	1	1	F
16	0	0	0	1	0	0	0	0	10
17	0	0	0	1	0	0	0	1	11

17	U	U	U	٠,	U	U	U		- 11	ı
					•••					
				**	•••					
		p. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.			•••					
253	1	1	1	1	1	1	0	1	FD	
254	1	1	1	1	1	1	1	0	FE	
255	1	1	1	1	1	1	1	1	FF	1

	0	1	2	3	4	5	6	7
0	NUL	DLE	space	0	@	Р	*	р
1	SOH	DC1 XON	1	1	Α	Q	а	q
2	STX	DC2	"	2	В	R	b	r
3	ETX	DC3 XOFF	#	3	С	S	С	s
4	EOT	DC4	\$	4	D	Т	d	t
5	ENQ	NAK	%	5	Е	U	е	u
6	ACK	SYN	&	6	F	٧	f	٧
7	BEL	ЕТВ	1	7	G	W	g	W
8	BS	CAN	(8	Н	Х	h	×
9	HT	EM)	9	- 1	Υ	i	У
Α	LF	SUB	*	:	J	Z	j	Z
В	VT	ESC	+	i	K	[k	{
С	FF	FS	j.	<	L	1	-1	
D	CR	GS	-	=	M]	m	}
Е	so	RS		>	N	٨	n	~
F	SI	US	1	?	0	_	0	del

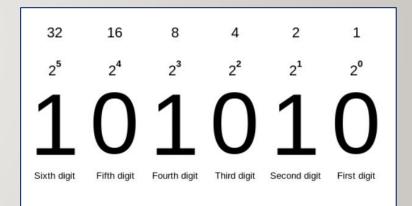

Decimal Numbering System (Humans)


The numbering system used by **humans**.

The **decimal** numbering system consists of **digits** ranging from **0** to **9**.

The fact that **humans** started counting on their **fingers** and **thumbs** most likely lead to the development of this numbering system.

The decimal numbering system is based on sums of the power of 10 which provides a framework for mathematic calculations.



Binary Numbers (Computers)

Digital computers have **circuits** which representing data in terms of voltage levels. Multiple circuits are used to represent data (in the form of *binary* numbers).

The **binary** numbering system consists of digits ranging from **0** to **1**. The numbering system is based on sums of the power of **2**.

Referring to the diagram to the right, the value of each decimal digit consists of the value (placeholder) multiplied by the corresponding power of 2. For example, 2^0 , 2^1 , 2^2 , etc. which move in a **right-to-left** direction.

1048576 4096 16 ... 65536 256 1 FEDCBA9876543210

Octal / Hexadecimal Numbers (short-cuts)

The **octal** and **hexadecimal** numbering systems consist of digits ranging from **0 to 7** and ranging from **0 to F** respectively.

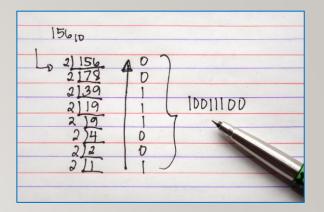
The **octal** and **hexadecimal** numbering system are based on sums of the power of **8** and **16** respectively. For *hexadecimal* numbers, values for **10 to 15** are represented by the characters **A to F** respectively.

These numbering systems are useful since they are **both multiples of 2** (binary) and can be used as **short-cuts** to represent a series of binary numbers:

I octal digit = 3 binary digits
I hexadecimal digit = 4 binary digits).

... 512 64 8 1

8⁵ 8⁴ 8³ 8² 8¹ 8⁰

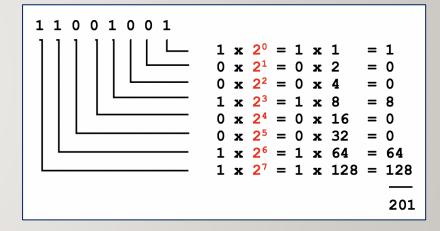

7 6 5 4 3 2 1 0

Performing Numbering Conversion

You will learn **several numbering conversion methods** in this course:

- I. Binary to Decimal
- 2. Decimal to Binary
- 3. Octal to Binary / Binary to Octal
- 4. Hexadecimal to Binary / Binary to Hexadecimal
- 5. Octal to Hexadecimal / Hexadecimal to Octal

NOTE: Each of these techniques are **unique**. You will be expected not only to perform these calculations on a *quiz | midterm exam | final exam* but also **show your work** and **use the same technique show in these slides** to obtain <u>full</u> marks.



Numbering Conversion Method 1: Binary to Decimal

When converting binary numbers to decimal numbers, perform the following steps::

- I. Write down the binary number.
- 2. Starting from the **right-side**, draw **L'**s below the binary number moving to the left (refer to diagram on right).
- 3. Starting on the *rightmost* "L", multiply the value (placeholder) by **2** to the power of zero.
- 4. Continually repeat **step #3** moving leftwards, increasing the power of 2 by **I** (refer to diagram on right).
- 5. Add up the results to obtain the decimal value equivalent.

NOTE: To convert *octal* and *hexadecimal* numbers to **decimal**, replace the number **2** (in red in the diagram to the right) with **8** (for *octal*) or **16** (for *hexadecimal*).

Instructor Demonstration

Your instructor will now demonstration how to perform a

Binary to Decimal conversion

Numbering Conversion Method 2: Decimal to Binary

When converting **decimal** numbers to **binary** numbers, perform the following steps:

- Write down the decimal number to be converted.
- 2. On the *right-side*, write the number I and moving **leftwards**, keep <u>doubling</u> the numbers until that number is **greater than** the decimal number to be converted (refer to the diagram on the right).
- 3. Starting on the left-side of those doubled numbers, compare that number with the decimal number. If that number if less than or equal to the decimal number, then write a 1 below and subtract that number from the decimal number to get a remainder. If the number is greater than decimal number (or remainder), then write a 0 below.
- 4. Repeat **step #3** (moving rightwards and comparing the number with the decimal's remainder)

NOTE: If you are converting to **8-bit**, **32-bit**, etc., add **leading zeros** if necessary.

Instructor Demonstration

Your instructor will now demonstration how to perform a

Decimal to **Binary** conversion

Numbering Conversion Method 3: Octal to Binary / Binary to Octal

Binary to Octal

- I. One octal number represents 3 binary numbers, so starting from right-side, group binary digits into groups of 3 (add leading zeros if necessary).
- 2. Write (4)(2)(1) under each group of 3 binary numbers.
- 3. Multiply the value or "placeholder" (i.e. 0's and 1's) by the corresponding (4)(2)(1) for each group to obtain the octal number (refer to diagram of binary to octal conversion).

Octal to Binary

- I. One octal number represents 3 binary numbers, so space-out the octal numbers to make space for a binary number.
- 2. Write (4)(2)(1) under each octal number.
- 3. Write 0's or 1's for each group of binary numbers to add up to the corresponding octal number (refer to diagram of octal to binary conversion).

101001110 $\frac{1 \ 0 \ 1}{{}^{(4)} \ {}^{(2)} \ {}^{(1)} \ {}^{(4)} \ {}^{(2)} \ {}^{(1)} \ {}^{(4)} \ {}^{(2)} \ {}^{(1)} \ {}^{(4)} \ {}^{(2)} \ {}^{(1)}}$ 5 1 6

7 3 5 (4)(2)(1)(4)(2)(1)(4)(2)(1) 1 1 1 0 1 1 0 1

735

Instructor Demonstration

Your instructor will now demonstration how to perform an

Octal to Binary conversion and a Binary to Octal conversion.

Numbering Conversion Method 4: Hexadecimal to Binary / Binary to Hexadecimal

Binary to Hexadecimal

- One hexadecimal number represents 4 binary numbers, so starting from right-side, group binary digits into groups of 4 (add leading zeros if necessary).
- Write (8)(4)(2)(1) under each group of 4 binary numbers.
- Multiply the placeholders (i.e. **0**'s and **1**'s) by the corresponding (8)(4)(2)(1) for each group to obtain the octal number.
- Convert values from 10 to 15 to A to F
 (refer to diagram of binary to hexadecimal conversion)

Hexadecimal to Binary

- One hexadecimal number represents 4 binary numbers,
 so space-out the hexadecimal numbers to make space for a binary number.
- Convert letters A to F to 10 to 15 (refer to diagram of binary to hexadecimal conversion)
- Write (8)(4)(2)(1) under <u>each</u> hexadecimal number.
- Write **0**'s or **1**'s for each group of binary numbers to add up to the corresponding hexadecimal number (refer to diagram of hexadecimal to binary conversion).

```
D5F

A - 10

B - 11

C - 12

(8) (4) (2) (1) (8) (4) (2) (1) (8) (4) (2) (1)

1 1 0 1 0 1 0 1 1 1 1 1

E - 14

F - 15
```


Instructor Demonstration

Your instructor will now demonstration how to perform a

Hexadecimal to Binary conversion and a Binary to Hexadecimal conversion.

Numbering Conversion Method 5: Octal to Hexadecimal / Hexadecimal to Octal

To convert using the method, simply use binary as a "bridge".

Example:

- To convert octal to hexadecimal, convert octal to binary, then convert binary to hexadecimal.
- To convert hexadecimal to octal, convert hexadecimal to binary, then convert binary to octal.

```
Octal -> binary -> Hexadecimal
Hexadecimal -> binary -> Octal
```


Instructor Demonstration

Your instructor will now demonstration how to perform an

Octal to Hexadecimal conversion and a Hexadecimal to Octal conversion.

Getting Practice

Perform the online tutorial **Tutorial 4: Data Representation / Numbering Conversions / File Permissions (ctrl-click** to open link):

- INVESTIGATION I: NUMBERING CONVERSIONS
- <u>LINUX PRACTICE QUESTIONS</u> (Questions I 5)

ULI101: INTRODUCTION TO UNIX / LINUX AND THE INTERNET

WEEK 4: LESSON 2

FILE PERMISSIONS

PHOTOS AND ICONS USED IN THIS SLIDE SHOW ARE LICENSED UNDER CC BY-SA

LESSON 2 TOPICS

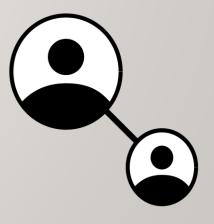
File Permissions

- Purpose
- Directory vs. Regular File Permissions
- Changing File Permissions (chmod)
- Setting File Permissions for Newly Created Directories and Regular Files (umask)
- Demonstration

Perform Week 4 Tutorial

- Investigation 2
- Review Questions (Questions 6 12)

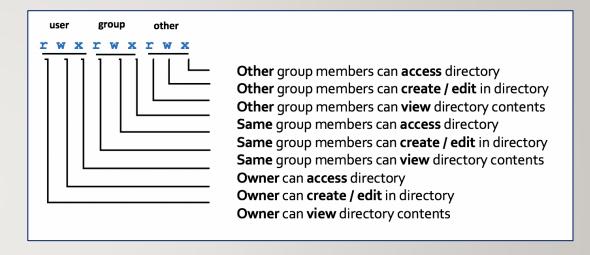
drwxr-xr-x 2 murray.saul users 6 Jan 19 14:06 mydir -rw-r--r- 1 murray.saul users 0 Jan 19 14:05 myregfile


File Permissions

Since Unix / Linux operating systems allow for **multiple user accounts**, it is <u>essential</u> to have a system to **share** or **limit** access to directories and files contained in those file systems.

When **directories** and regular files are created, they are assigned to an **owner** (typically the username which is the creator). To allow or limit access to those files and directories, those files and directories are assigned to an initial **group** referred to as a "**primary group**".

Users that <u>own</u> those *directories* and *regular files* are referred to as **users**, users that belong within that <u>same primary group</u> are referred to as <u>same group</u> members, and those users are do <u>NOT</u> belong to a particular group are referred to as <u>other group members</u>.


File Permissions consist of two-layers:

First, the permissions relating to a **directory**. Refer to the diagram on the <u>right-side</u> for directory permissions.

Second, the permissions relating to the regular files contained within a directory. Refer to the diagram on bottom right-side for regular file permissions.

NOTE: Permissions for **directories** have a <u>different</u> meaning than permissions for **regular files**.

NOTE: A symbol dash "-" indicates that the permission is **NOT** granted.

Changing File Permissions with chmod command: Symbolic Method:

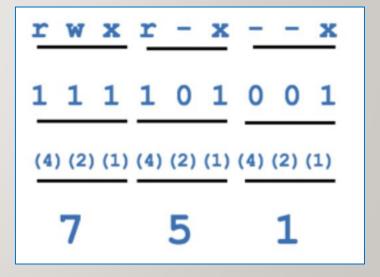
The chmod command can use symbols to add, remove, and set rwx permissions for user, same group members, other group members or ALL categories:

NOTE: You can use the **-R** option to set permissions for directory, subdirectory and directory contents **recursively**.

Command	Description
chmod ugo+x script.bash	Add execute permissions to the file script.bash so it can be run.
chmod u=rwx,go=x ~	Set "pass-thru" permissions of your home directory for same group members and other group members to navigate to other subdirectories (that may have access / view permissions).
chmod go-w ~/shared	Remove write permissions for same group members and other group members for the directory ~/shared
chmod a=rx myfile.txt	Set read and execute permissions for the directory myfile.txt

Instructor Demonstration

Your instructor will now demonstrate how to **add**, **remove** and **set** permissions with the **chmod** command the *Symbolic* method


Changing File Permissions with chmod command: Absolute (Octal) Method

You can also use **octal numbers** to **set** permissions. This method is a short-cut and may require less typing than using the *symbolic* method.

First, write permissions for user, group and others that you want to set. If permission is granted, write I and if not granted, write 0.

Second, perform a **binary to octal conversion**, for each group of three (user, group, other) and then issue the **chmod** command using the Absolute / Octal method.

You can only use this method to **set** file permissions (as opposed to *adding* or *removing* permissions).

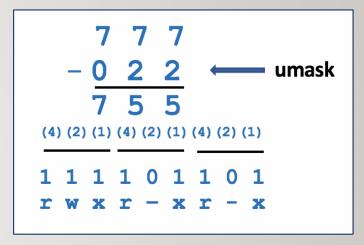
Changing File Permissions with chmod command: Absolute (Octal) Method

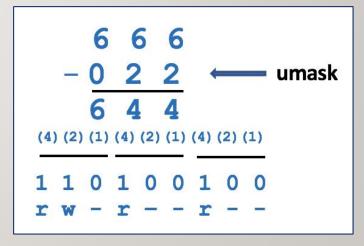
Below is a table that displays common **chmod** commands (using the Absolute / Octal method) for <u>common</u> purposes.

Command	Description
chmod 500 script.bash	Set read and execute permissions for only the user for the file script.bash so it can be run.
chmod 711 ~	Set "pass-thru" permissions of your home directory.
chmod 750 ~/shared	Set full permissions for user, read and access permissions for some group members and no permissions for other group members for the directory ~/shared
chmod 555 myfile.txt	Set read and execute permissions for the directory myfile.txt

Instructor Demonstration

Your instructor will now demonstrate how to **set** permissions with the **chmod** command using the *Absolute / Octal* method.


Setting Permissions for Newly-Created Directories and Regular Files (umask):


The umask command is used to set the permissions of newly-created directories and regular files. Issuing the umask command without arguments will display the current umask value.

The diagram on the <u>above right</u> shows how to calculate permissions for newly-created **directories** using the **umask** command.

The diagram on the <u>below right</u> shows how to calculate permissions for newly-created **regular files** using the **umask** command.

Setting the **umask** value works only in the current shell session unless the umask command is contained in a start-up file (e.g. **.profile**, **.bash_profile**, or **.bashrc**). Start-up files are discussed at the end of this course.

Instructor Demonstration

Your instructor will now demonstrate how to **set** / **confirm** permissions of <u>newly-created</u> directories and regular files using the **umask** command.

Getting Practice

Perform the online tutorial **Tutorial 4: Data Representation / Numbering Conversions / File Permissions (ctrl-click** to open link):

- INVESTIGATION 2: FILE PERMISSIONS
- LINUX PRACTICE QUESTIONS (Questions 6 12)