
OSL640: INTRODUCTION TO OPEN SOURCE SYSTEMS

WEEK 8: LESSON 1

LINKING FILES

PHOTOS AND ICONS USED IN THIS SLIDE SHOW ARE LICENSED UNDER CC BY-SA

https://creativecommons.org/licenses/by-sa/3.0/

LESSON 1 TOPICS

Linking Files

• i-nodes

• Hard Links / Demonstration

• Symbolic Links / Demonstration

Perform Week 8 Tutorial

• Investigation 1

• Review Questions (Questions 1 – 2)

LINKING FILES

inode (index) Number of a File:

The i-node number is like a ”finger-print” which is unique for each file on

the Unix / Linux file system.

The i-node is an index (data structure) that provides information about the

file such as if the file is a directory or regular file, etc.

Referring to the diagram below, issuing the ls command using the -i option

displays the i-node number for each file. You can see that each file has its own

unique i-node number in the file system.

LINKING FILES

Hard Links

A Hard link is a reference to the same index on a file system.

It does this by creating a file that shares the same i-node

number with the other file.

An advantage of using hard links is that if one hard link remains

(even if original file has been removed), the data in that hard-

linked file is NOT lost. Also, any change to each file will be

reflected in any hard-linked file which is useful for backups.

Limitations of hard links are that they take-up extra space,

you cannot hard link directories. Also, you cannot hard link

files from other Unix/Linux servers (since the i-node number

may already be used by the other Unix/Linux server).

LINKING FILES

Hard Links

Examples:

touch myfile.txt

ln myfile.txt myfile1.hard.lnk

ln myfile.txt myfile2.hard.lnk

ln myfile.txt ~/backups/myfile.hard.lnk

ls –li myfile*

LINKING FILES

Instructor Demonstration

Your instructor will now demonstrate how to create Hard Links.

LINKING FILES

Symbolic Links

A Symbolic Link is an indirect pointer to a file and are also known as

a soft link or symlink. The symbolic link file contains

the pathname to the original file.

An advantage of using symbolic links is they act as shortcuts to other

files (in fact, the symbolic linked file only contains the pathname to the

original file). Also, you can create symbolic links on different Unix/Linux

servers, and that you can create symbolic links for directories.

A limitation of using symbolic links is that they are NOT good for

backup purposes since a symbolic link can point to a nonexistent file

(referred to as a "broken link").

LINKING FILES

Symbolic Links

Examples:

touch otherfile.txt

ln -s otherfile.txt otherfile1.sym.lnk

ln -s otherfile.txt otherfile2.sym.lnk

ln -s otherfile.txt ~/backups/otherfile.sym.lnk

ls –li otherfile*

LINKING FILES

Instructor Demonstration

Your instructor will now demonstrate how to create Symbolic (Soft) links.

LINKING FILES

Getting Practice

To get practice perform Week 8 Tutorial:

• INVESTIGATION 1: LINKING FILES

• LINUX PRACTICE QUESTIONS (Questions 1 – 2)

https://wiki.cdot.senecacollege.ca/w/index.php?title=Tutorial_8_-_Links_/_Process_Management#INVESTIGATION_1:_LINKING_FILES
https://wiki.cdot.senecacollege.ca/w/index.php?title=Tutorial_8_-_Links_/_Process_Management#LINUX_PRACTICE_QUESTIONS

OSL640: INTRODUCTION TO OPEN SOURCE SYSTEMS

WEEK 8: LESSON 2

MANAGING PROCESSES

ALIASES AND COMMAND HISTORY

PHOTOS AND ICONS USED IN THIS SLIDE SHOW ARE LICENSED UNDER CC BY-SA

https://creativecommons.org/licenses/by-sa/3.0/

LESSON 2 TOPICS

Processes

• Process Definition / Foreground vs Background Processes

• Running Processes in the Background

• Managing Processes

• Demonstration

Aliases & Command History

• Purpose / Usage / Demonstration

Perform Week 8 Tutorial

• Investigations 2 and 3

• Review Questions (Questions 3 – 8)

MANAGING PROCESSES

Processes Definition

All programs (tasks) that are running on a Unix/Linux computer system are

referred to as processes.

Characteristics of Processes:

• Each process has an owner

• Each process has a unique ID (PID)

• Processes keep their PID for their entire life.

• Usually a parent sleeps (i.e. suspended) when a child is running

(the exception is when the child process is running in the background)

• UNIX / Linux processes are hierarchical. The process structure can have

children processes, great grandchild processes, etc.

MANAGING PROCESSES

Viewing Process Information
You can issue Linux commands to provide information regarding running processes.

The ps (process status) command displays a snapshot of process information.

The top command provides real-time status of all running processes (press ctrl-c to exit top command)

Linux Command Purpose

ps Basic listing of processes in current user’s terminal,
for example: PID, process names.

ps -l Detailed listing in current user’s terminal

for example: PID, parent PID (PPID), status, etc.

ps -ef Detailed listing ALL processes running on entire system.

ps aux Detailed listing of processes for ALL users and background running services

(i.e. DAEMONS – background running services).

ps –U username Basic listing of processes running for a particular user.

MANAGING PROCESSES

Instructor Demonstration

Your instructor will now demonstrate how

to view processes.

MANAGING PROCESSES

Foreground vs. Background Processes

Processes in UNIX can run in the foreground or background

Commands issued from the shell normally run in the foreground.

Programs / Commands can be run in the background by placing

an ampersand & after the command.

For example: command &

MANAGING PROCESSES

Managing Foreground Processes

Users can manage processes to become more productive

while working in the Unix / Linux Command-line environment.

Below are keyboard shortcuts to manage foreground processes.

Linux Command Purpose

ctrl-c Terminates a process running in the foreground

ctrl-z Sends a process running in the foreground into the background.

Process is stopped (suspended) in background and requires bg

command to run in background.

MANAGING PROCESSES

Managing Background Processes

Below are common Linux commands / keyboard shortcuts

to manage background processes.

Linux Command Purpose

fg The fg (foreground) command moves a background job into the foreground.

The fg command issued without arguments will place the most recent process

in the background to the foreground.
Example:fg %job-number

bg The bg utility resumes suspended jobs from the current environment. The

bg command issued without arguments will run the most recent process that

was placed into the background.
Example:bg %job-number

jobs The jobs utility displays the status of jobs that were started

in the current shell environment

MANAGING PROCESSES

Instructor Demonstration

Your instructor will now demonstrate how

to manage foreground and background processes.

MANAGING PROCESSES

Terminating Processes

You can use the kill command to terminate processes.

You need to be the owner of the process to perform this operation.

The kill command sends the specified signal to the specified processes or process groups. If no signal

is specified, the SIGTERM signal (#15) is sent.

The default action for this signal is to terminate the process.

If the TERM signal does NOT work, you can issue the kill command with the

option -9 (i.e. SIGKILL, signal #9).

Examples:

kill %jobnumber

kill -9 %jobnumber

kill PID

kill -9 PID

MANAGING PROCESSES

Instructor Demonstration

Your instructor will now demonstrate how to terminate processes.

ALIASES / COMMAND HISTORY

Using Aliases

Using the alias command assigns a nickname to an existing command

or a series of commands. The unalias command is used to remove existent aliases.

Examples:

alias (alias command without an argument will display all

the aliases currently set)

alias dir=ls

alias lal='ls -al'

alias clearfile='cat /dev/null >'

unalias clearfile (removes alias clearfile from memory)

ALIASES / COMMAND HISTORY

Command History:

The ~/.bash_history file stores recently executed command lines.

There are several techniques using the ~/.bash_history file to run

previously-issued commands..

Examples:

<up> or <down> move to previous or next command in Bash shell prompt

fc –l display last 16 commands

history | more display all stored commands

!# re-executes command by command number (obtained from history command)

!abc re-executes last command beginning with string ”abc”

MANAGING PROCESSES

Instructor Demonstration

Your instructor will now demonstrate how to use aliases

and command history.

MANAGING PROCESSES / ALIASES / COMMAND HISTORY

Getting Practice

To get practice perform Week 8 Tutorial:

• INVESTIGATION 2: MANAGING PROCESSES

• INVESTIGATION 3: ALIASES / COMMAND HISTORY

• LINUX PRACTICE QUESTIONS (Questions 3 – 8)

https://wiki.cdot.senecacollege.ca/wiki/Tutorial_8_-_Links_/_Process_Management#INVESTIGATION_2:_MANAGING_PROCESSES
https://wiki.cdot.senecacollege.ca/wiki/Tutorial_8_-_Links_/_Process_Management#INVESTIGATION_3:_ALIASES_.2F_COMMAND_HISTORY
https://wiki.cdot.senecacollege.ca/wiki/Tutorial_8_-_Links_/_Process_Management#LINUX_PRACTICE_QUESTIONS

