
ULI101: INTRODUCTION TO UNIX / LINUX AND THE INTERNET

WEEK 3: LESSON 2

FILENAME EXPANSION

QUOTING SPECIAL CHARACTERS

PHOTOS AND ICONS USED IN THIS SLIDE SHOW ARE LICENSED UNDER CC BY-SA

https://creativecommons.org/licenses/by-sa/3.0/

LESSON 1 TOPICS

File Name Expansion

• Purpose

• Special characters for Filename Expansion: * , ? , [] , [!]

• Demonstration

Quoting Special Characters

• Purpose

• Backslash \ , Single Quotes ‘’, Double Quotes “”

• Demonstration

Perform Week 3 Tutorial

• INVESTIGATIONS 2 and 3

• LINUX PRACTICE QUESTIONS (Questions 9 – 13)

FILENAME EXPANSION

Filename Expansion

This command displayed below is inefficient: it requires a LOT of typing and requires

that the user know all the filenames within the current directory.

ls a.txt b.txt c.txt 1.txt 2.txt 3.txt abc.txt work.txt

a.txt b.txt c.txt 1.txt 2.txt 3.txt abc.txt work.txt

Filename expansion is the use of special characters to allow the shell to match files that share the

same characteristics to help save the user save time when issuing Unix / Linux file management

commands.

You can use a special character to indicate to the Bash shell to match all files

that end with the extension ".txt":

ls *.txt

a.txt b.txt c.txt 1.txt 2.txt 3.txt abc.txt

FILENAME EXPANSION

Common File Expansion Symbols

Filename Expansion

Symbol

Purpose

* Asterisk (*) to represent 0 or more characters

? Question mark (?) to represent exactly one character (any character)

[] Square brackets ([]) to represent and match for the character enclosed within the square

brackets. It represents ONLY ONE character:

it's like a Question Mark (?) but with conditions or restrictions

[!] Square brackets containing an exclamation mark immediately after

the open square bracket ([!]) to represent and match and OPPOSITE character for the character

enclosed within the square brackets.

FILENAME EXPANSION

How Does File Expansion Work? (Process of “Globbing”)

File Globbing is a feature provided by the UNIX/Linux shell to represent multiple filenames by using special

characters called wildcards with a single file name. A wildcard is essentially a symbol which may be used to

substitute for one or more characters. Therefore, we can use wildcards for generating the appropriate

combination of file names as per our requirement.

Reference: https://www.linuxnix.com/10-file-globbing-examples-linux-unix/

https://www.linuxnix.com/10-file-globbing-examples-linux-unix/

FILENAME EXPANSION

How Does this Work? (Globbing)

As shown in the diagram on the right, when the ls command

is issued with a filename expansion symbol (like *), the Bash

shell searches for all files in the current directory that

match files that end with the extension ".txt”.

The shell replaces *.txt with all the files that end with the

extension .txt in the current directory and runs that

command.

You do not see that happen in the shell…

it is a process that occurs "behind the scenes”.

Instead, you only see the results of the command.

FILENAME EXPANSION

Instructor Demonstration

Your instructor will now demonstrate how to issue Unix / Linux commands

using various filename expansion symbols for file management:

• Creating / Removing Directories

• Moving Files / Directories

• Copying Files / Directories

• Listing Directory Contents

• Removing Regular Files

COMMAND HISTORY

Command History:

The ~/.bash_history file stores recently executed command lines.

There are several techniques using the ~/.bash_history file to run

previously-issued commands.

Examples:

<up> or <down> move to previous or next command in Bash shell prompt

fc –l display last 16 commands

history | more display all stored commands

!# re-executes command by command number (obtained from history command)

!abc re-executes last command beginning with string ”abc”

QUOTING SPECIAL CHARACTERS

Quoting Special Characters

As discussed in the above section, there are some special characters that the shell uses

to perform an operation; for example, the filename expansion symbols: *, ?, [] or [!]

There are methods to instruct the Linux shell to ignore that special character

and use only as regular text.

These 3 methods to make those special characters act like text

characters (referred to "quoting" special characters).

These methods are displayed in the next slide.

QUOTING SPECIAL CHARACTERS

Quoting Special Characters (Methods)

The most common filename expansion symbols are displayed below:

Quoting Method Example

Place the character \ before a special character

(works for ALL special characters)

echo *

Contain Special character within single quotes ‘ ’

(work for ALL special characters)

echo '* hello *'

Contain special characters within double-quotes “ ”

NOTE: Double quotes works for most special

characters, but not all special characters

(such as $variable-name - variables are discussed later in this course)

echo "* hello *"

QUOTING SPECIAL CHARACTERS

Instructor Demonstration

Your instructor will now demonstrate how to issue Unix / Linux commands

quoting special characters, their uses and their consequences:

• Displaying Text

• Creating / Removing Directories

• Listing Directory Contents

• Removing Regular Files

HOMEWORK

Getting Practice

Perform the online tutorial Tutorial 3: Unix / Linux File Management

(Due: Friday Week 4 @ midnight for a 2% grade):

• INVESTIGATION 2: FILENAME EXPANSION

• INVESTIGATION 3: QUOTING SPECIAL CHARACTERS

• LINUX PRACTICE QUESTIONS (Questions 9 – 13)

https://wiki.cdot.senecacollege.ca/wiki/Tutorial3:_Advanced_File_Management_/_Quoting_Special_Characters#INVESTIGATION_2:_FILENAME_EXPANSION
https://wiki.cdot.senecacollege.ca/wiki/Tutorial3:_Advanced_File_Management_/_Quoting_Special_Characters#INVESTIGATION_3:_QUOTING_SPECIAL_CHARACTERS
https://wiki.cdot.senecacollege.ca/wiki/Tutorial3:_Advanced_File_Management_/_Quoting_Special_Characters#LINUX_PRACTICE_QUESTIONS

