ULI101: INTRODUCTION TO UNIX / LINUX AND THE INTERNET

WEEK 4: LESSON I

DATA REPRESENTATION NUMBERING CONVERSION

PHOTOS AND ICONS USED IN THIS SLIDE SHOW ARE LICENSED UNDER CC BY-SA

LESSON I TOPICS

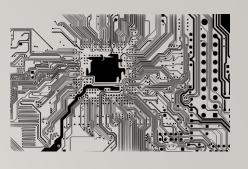
Data Representation

- Purpose
- Decimal, Binary, Octal, Hexadecimal Numbering Systems
- Numbering Conversion Methods
- Demonstration

Perform Week 4 Tutorial

- Investigation I
- Review Questions (Questions 1 − 5)

Data Representation


Digital computers are electronic devices that contain a series of circuits and voltage levels that can store / represent data.

Binary numbers can represent those series of circuits with voltage levels. Those binary numbers (0's and 1's) are combined in a sequence to form a **byte**.

Bytes are used to represent numbers or characters.

It is the job of the computer program to understand if those bytes (series of o's and/or I's) represent numbers or characters (eg. in **C programming**, declaring a variable with a **data type**)

Understanding how the computer stores numbers and characters can be useful when **administrating computer systems** and **creating programs** to be run on computer systems.

DEC.			E	BIN.	AR'	Y			HEX.
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	2
3	0	0	0	0	0	0	1	1	3
4	0	0	0	0	0	1	0	0	4
5	0	0	0	0	0	1	0	1	5
6	0	0	0	0	0	1	1	0	6
7	0	0	0	0	0	1	1	1	7
8	0	0	0	0	1	0	0	0	8
9	0	0	0	0	1	0	0	1	9
10	0	0	0	0	1	0	1	0	Α
11	0	0	0	0	1	0	1	1	В
12	0	0	0	0	1	1	0	0	С
13	0	0	0	0	1	1	0	1	D
14	0	0	0	0	1	1	1	0	E
15	0	0	0	0	1	1	1	1	F
16	0	0	0	1	0	0	0	0	10
17	0	0	0	1	0	0	0	1	11
253	1	1	1	1	1	1	0	1	FD
254	1	1	1	1	1	1	1	0	FE
255	1	1	1	1	1	1	1	1	FF

	0	1	2	3	4	5	6	7
0	NUL	DLE	space	0	@	Р		p
1	SOH	DC1 XON	-1	1	Α	Q	а	q
2	STX	DC2	н	2	В	R	b	r
3	ETX	DC3 XOFF	#	3	С	S	С	s
4	EOT	DC4	\$	4	D	Т	d	t
5	ENQ	NAK	%	5	E	U	е	u
6	ACK	SYN	&	6	F	٧	f	٧
7	BEL	ETB		7	G	W	g	W
8	BS	CAN	(8	Н	X	h	×
9	HT	EM)	9	-1	Y	i	У
Α	LF	SUB	*	1	J	Z	j	Z
В	VT	ESC	+	1	K]	k	{
С	FF	FS		<	L	1	1	- 1
D	CR	GS	-	=	M]	m	}
E	so	RS		>	N	۸	n	~
F	SI	US	1	?	0	220	0	de

Numbering Conversion:

Computers have evolved over time. During that time, humans have interfaced with the computer by *binary* numbers, or by using **short-cuts** such as **octal** or **hexadecimal** numbers.

Computer Networking / Support Specialists and Computer Programmers occasionally need to convert between numbering systems:

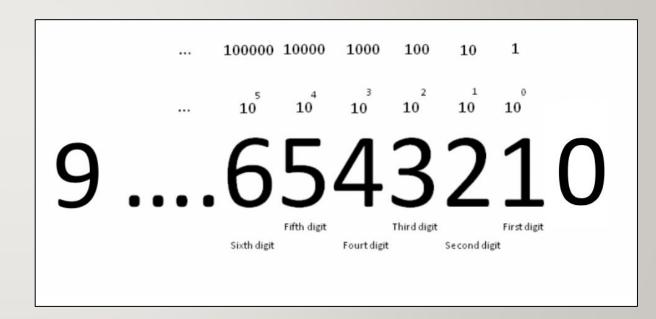
- Converting decimal numbers to binary number for URLs (subnetting)
- Converting decimal numbers to hexadecimal numbers to format webpages (with web-safe colours)
- Converting binary numbers to octal numbers for setting file permissions in Unix/Linux

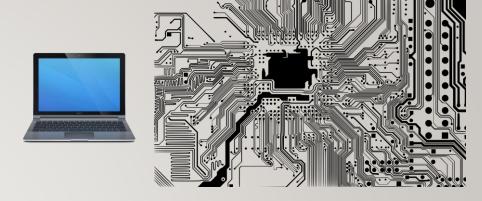
Before performing numbering conversions, we need to better understand the **decimal**, **binary**, **octal** and **hexadecimal** numbering systems.

DEC.			E	BIN.	AR'	Y			HEX.
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	2
3	0	0	0	0	0	0	1	1	3
4	0	0	0	0	0	1	0	0	4
5	0	0	0	0	0	1	0	1	5
6	0	0	0	0	0	1	1	0	6
7	0	0	0	0	0	1	1	1	7
8	0	0	0	0	1	0	0	0	8
9	0	0	0	0	1	0	0	1	9
10	0	0	0	0	1	0	1	0	Α
11	0	0	0	0	1	0	1	1	В
12	0	0	0	0	1	1	0	0	С
13	0	0	0	0	1	1	0	1	D
14	0	0	0	0	1	1	1	0	E
15	0	0	0	0	1	1	1	1	F
16	0	0	0	1	0	0	0	0	10
17	0	0	0	1	0	0	0	1	11

		1			1 - 1	-	-		
					•••				
				**	•••				
253	1	1	1	1	1	1	0	1	FD
254	1	1	1	1	1	1	1	0	FE
255	1	1	1	1	1	1	1	1	FF

	0	1	2	3	4	5	6	7
0	NUL	DLE	space	0	@	Р	*	р
1	SOH	DC1 XON	1	1	Α	Q	а	q
2	STX	DC2	"	2	В	R	b	r
3	ETX	DC3 XOFF	#	3	С	S	С	s
4	EOT	DC4	\$	4	D	Т	d	t
5	ENQ	NAK	%	5	E	U	е	u
6	ACK	SYN	&	6	F	٧	f	٧
7	BEL	ЕТВ	1	7	G	W	g	W
8	BS	CAN	(8	Н	Х	h	×
9	HT	EM)	9	-1	Υ	i	У
Α	LF	SUB	*	:	J	Z	j	Z
В	VT	ESC	+	÷	K	[k	{
С	FF	FS	ij	<	L	1	1	-1
D	CR	GS	-	=	М]	m	}
Е	so	RS		>	Ν	۸	n	~
F	SI	US	1	?	0		0	del

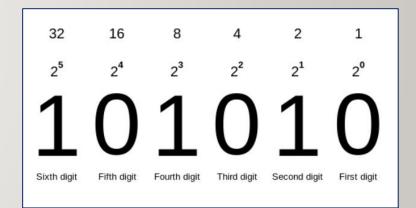

Decimal Numbering System (Humans)


The numbering system used by **humans**.

The **decimal** numbering system consists of **digits** ranging from **0** to **9**.

The fact that **humans** started counting on their **fingers** and **thumbs** most likely lead to the development of this numbering system.

The decimal numbering system is based on **sums of the power of 10** which provides a framework for mathematic calculations.



Binary Numbers (Computers)

Digital computers have **circuits** which representing data in terms of voltage levels. Multiple circuits are used to represent data (in the form of *binary* numbers).

The **binary** numbering system consists of digits ranging from **0** to **1**. The numbering system is based on sums of the power of **2**.

Referring to the diagram to the right, the value of each decimal digit consists of the value (placeholder) multiplied by the corresponding power of 2. For example, 2^0 , 2^1 , 2^2 , etc. which move in a **right-to-left** direction.

1048576 4096 16 ... 65536 256 1 FEDCBA9876543210

Octal / Hexadecimal Numbers (short-cuts)

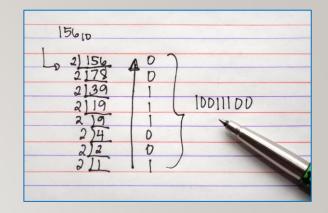

The **octal** and **hexadecimal** numbering systems consist of digits ranging from **0 to 7** and ranging from **0 to F** respectively.

The **octal** and **hexadecimal** numbering system are based on sums of the power of **8** and **16** respectively. For *hexadecimal* numbers, values for **10 to 15** are represented by the characters **A to F** respectively.

These numbering systems are useful since they are **both multiples of 2** (binary) and can be used as **short-cuts** to represent a series of binary numbers:

I octal digit = 3 binary digits

I hexadecimal digit = 4 binary digits).

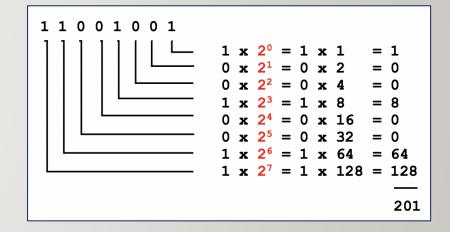


Performing Numbering Conversion

You will learn several numbering conversion methods in this course:

- I. Binary to Decimal
- 2. Decimal to Binary
- 3. Octal to Binary / Binary to Octal
- 4. Hexadecimal to Binary / Binary to Hexadecimal
- 5. Octal to Hexadecimal / Hexadecimal to Octal

NOTE: Each of these techniques are **unique**. You will be expected not only to perform these calculations on a *quiz | midterm exam | final exam* but also **show your work** and **use the same technique show in these slides** to obtain <u>full</u> marks.



Numbering Conversion Method I: Binary to Decimal

When converting **binary** numbers to **decimal** numbers, perform the following steps:

- I. Write down the binary number.
- 2. Starting from the **right-side**, draw **L'**s below the binary number moving to the left (refer to diagram on right).
- 3. Starting on the *rightmost* "L", multiply the value (placeholder) by 2 to the power of zero.
- 4. Continually repeat **step #3** moving leftwards, increasing the power of 2 by I (refer to diagram on right).
- 5. Add up the results to obtain the decimal value equivalent.

NOTE: To convert *octal* and *hexadecimal* numbers to **decimal**, replace the number **2** (in red in the diagram to the right) with **8** (for *octal*) or **16** (for *hexadecimal*).

Instructor Demonstration

Your instructor will now demonstration how to perform a

Binary to Decimal conversion

Numbering Conversion Method 2: Decimal to Binary

When converting **decimal** numbers to **binary** numbers, perform the following steps:

- Write down the **decimal number** to be converted.
- 2. On the *right-side*, write the number I and moving **leftwards**, keep <u>doubling</u> the numbers until that number is **greater than** the decimal number to be converted (refer to the diagram on the right).
- 3. Starting on the left-side of those doubled numbers, compare that number with the decimal number. If that number if less than or equal to the decimal number, then write a 1 below and subtract that number from the decimal number to get a remainder. If the number is greater than decimal number (or remainder), then write a 0 below.
- 4. Repeat **step #3** (moving rightwards and comparing the number with the decimal's remainder)

NOTE: If you are converting to **8-bit**, **32-bit**, etc., add **leading zeros** if necessary.

Instructor Demonstration

Your instructor will now demonstration how to perform a

Decimal to **Binary** conversion

Numbering Conversion Method 3: Octal to Binary / Binary to Octal

Binary to Octal

- I. One octal number represents 3 binary numbers, so starting from right-side, group binary digits into groups of 3 (add leading zeros if necessary).
- 2. Write (4)(2)(1) under each group of 3 binary numbers.
- 3. Multiply the value or "placeholder" (i.e. 0's and 1's) by the corresponding (4)(2)(1) for each group to obtain the octal number (refer to diagram of binary to octal conversion).

Octal to Binary

- 1. One octal number represents 3 binary numbers, so space-out the octal numbers to make space for a binary number.
- 2. Write (4)(2)(1) under each octal number.
- 3. Write 0's or 1's for each group of binary numbers to add up to the corresponding octal number (refer to diagram of octal to binary conversion).

```
101001110
\frac{1 \ 0 \ 1}{^{(4)} \ ^{(2)} \ ^{(1)}} \frac{0 \ 0 \ 1}{^{(4)} \ ^{(2)} \ ^{(1)}} \frac{1 \ 1 \ 0}{^{(4)} \ ^{(2)} \ ^{(1)}}
5 1 6
```

```
7 3 5
(4) (2) (1) (4) (2) (1) (4) (2) (1)
1 1 1 0 1 1 0 1
```

Instructor Demonstration

Your instructor will now demonstration how to perform an

Octal to Binary conversion and a Binary to Octal conversion.

Numbering Conversion Method 4: Hexadecimal to Binary / Binary to Hexadecimal

Binary to Hexadecimal

- One hexadecimal number represents 4 binary numbers, so starting from right-side, group binary digits into groups of 4 (add leading zeros if necessary).
- Write (8)(4)(2)(1) under each group of 4 binary numbers.
- Multiply the placeholders (i.e. 0's and 1's) by the corresponding (8)(4)(2)(1) for each group to obtain the octal number.
- Convert values from 10 to 15 to A to F
 (refer to diagram of binary to hexadecimal conversion)

Hexadecimal to Binary

- One hexadecimal number represents 4 binary numbers,
 so space-out the hexadecimal numbers to make space for a binary number.
- Convert letters A to F to 10 to 15 (refer to diagram of binary to hexadecimal conversion)
- Write (8)(4)(2)(1) under <u>each</u> hexadecimal number.
- Write **0**'s or **1**'s for each group of binary numbers to add up to the corresponding hexadecimal number (refer to diagram of hexadecimal to binary conversion).

Instructor Demonstration

Your instructor will now demonstration how to perform a

Hexadecimal to Binary conversion and a Binary to Hexadecimal conversion.

Numbering Conversion Method 5: Octal to Hexadecimal / Hexadecimal to Octal

To convert using the method, simply use binary as a "bridge".

Example:

Octal -> binary -> Hexadecimal
Hexadecimal -> binary -> Octal

- To convert octal to hexadecimal, convert octal to binary, then convert binary to hexadecimal.
- To convert hexadecimal to octal, convert hexadecimal to binary, then convert binary to octal.

Instructor Demonstration

Your instructor will now demonstration how to perform an

Octal to Hexadecimal conversion and a Hexadecimal to Octal conversion.

HOMEWORK

Getting Practice

Perform Week 4 Tutorial

(Due: Friday Week 5 @ midnight for a 2% grade):

- INVESTIGATION I: NUMBERING CONVERSIONS
- <u>LINUX PRACTICE QUESTIONS</u> (Questions I 5)