
ULI101: INTRODUCTION TO UNIX / LINUX AND THE INTERNET

WEEK 4: LESSON 2

FILE PERMISSIONS

PHOTOS AND ICONS USED IN THIS SLIDE SHOW ARE LICENSED UNDER CC BY-SA

https://creativecommons.org/licenses/by-sa/3.0/

LESSON 2 TOPICS

File Permissions

• Purpose

• Directory vs. Regular File Permissions

• Changing File Permissions (chmod)

• Setting File Permissions for Newly Created Directories and Regular Files (umask)

• Demonstration

Perform Week 4 Tutorial

• Investigation 2

• Review Questions (Questions 6 – 12)

FILE PERMISSIONS

File Permissions

Since Unix / Linux operating systems allow for multiple user accounts,

it is essential to have a system to share or limit access to directories and

files contained in those file systems.

When directories and regular files are created, they are assigned to

an owner (typically the username of the creator).

To allow or limit access to those files and directories, those files and

directories are assigned to an initial group referred to as a "primary

group".

Users that own those directories and regular files are referred to as users,

users that belong within that same primary group are referred to

as same group members, and those users are do NOT belong to a

particular group are referred to as other group members.

FILE PERMISSIONS

File permissions consist of two-layers:

• First, the permissions relating to

a directory.

• Second, the permissions relating to the

regular files contained within a directory.

NOTE: Permissions for directories have a different

meaning than permissions for regular files.

NOTE: A symbol dash "-" indicates that the

permission is NOT granted.

FILE PERMISSIONS

Changing File Permissions with chmod command - Symbolic Method:

The chmod command can use symbols to add, remove, and set rwx permissions for user, same group

members, other group members or ALL categories:

NOTE:You can use the -R option to set permissions for directory, subdirectory and directory contents recursively.

Command Description

chmod ugo+x script.bash Add execute permissions to the file script.bash so it can be run.

chmod u=rwx,go=x ~ Set "pass-thru" permissions of your home directory for same group members and

other group members to navigate to other subdirectories (that may have access / view

permissions).

chmod go-w ~/shared Remove write permissions for same group members and other group members for

the directory ~/shared

chmod a=rx myfile.txt Set read and execute permissions for the directory myfile.txt

FILE PERMISSIONS

Instructor Demonstration

Your instructor will now demonstrate how to add, remove and set

permissions with the chmod command the Symbolic method

FILE PERMISSIONS

Changing File Permissions with chmod command -

Absolute (Octal) Method:

You can also use octal numbers to set permissions.

This method is a shortcut and may require less typing than using

the symbolic method.

• First, write permissions for user, group and others that you want to

set. If permission is granted, write 1 and if not granted, write 0.

• Second, perform a binary to octal conversion, for each group of

three (user, group, other) and then issue the chmod command using

the absolute (octal) method.

You can only use this method to set file permissions (as opposed

to adding or removing permissions).

FILE PERMISSIONS

Changing File Permissions with chmod command: Absolute (Octal) Method

Below is a table that displays common chmod commands (using the Absolute / Octal method) for common

purposes.

Command Description

chmod 500 script.bash Set read and execute permissions for only the user for the file script.bash so it can be run.

chmod 711 ~ Set "pass-thru" permissions of your home directory.

chmod 750 ~/shared Set full permissions for user, read and access permissions for some group members and no

permissions for other group members for the directory ~/shared

chmod 555 myfile.txt Set read and execute permissions for the directory myfile.txt

FILE PERMISSIONS

Instructor Demonstration

Your instructor will now demonstrate how to set permissions

with the chmod command using the Absolute / Octal method.

FILE PERMISSIONS

Setting Permissions for Newly-Created Directories and

Regular Files (umask):

The umask command is used to set the permissions of newly-

created directories and regular files. Issuing the umask

command without arguments will display the current umask value.

The diagram on the above right shows how to calculate permissions

for newly-created directories using the umask command.

The diagram on the below right shows how to calculate

permissions for newly-created regular files using the umask

command.

Setting the umask value works only in the current shell session

unless the umask command is contained in a start-up file

(e.g. .profile, .bash_profile, or .bashrc). Start-up files are

discussed at the end of this course.

FILE PERMISSIONS

Instructor Demonstration

Your instructor will now demonstrate how to set / confirm

permissions of newly-created directories and regular files

using the umask command.

HOMEWORK

Getting Practice

Perform the online tutorial Tutorial 4: Unix / Linux File Management

(Due: Friday Week 5 @ midnight for a 2% grade):

• INVESTIGATION 2: FILE PERMISSIONS

• LINUX PRACTICE QUESTIONS (Questions 6 – 12)

https://wiki.cdot.senecacollege.ca/wiki/Tutorial4:_Data_Representation_/_Numbering_Conversion_/_File_Permissions#INVESTIGATION_2:_FILE_PERMISSIONS
https://wiki.cdot.senecacollege.ca/wiki/Tutorial4:_Data_Representation_/_Numbering_Conversion_/_File_Permissions#LINUX_PRACTICE_QUESTIONS

