
Intro to Python
This course will introduce you to the Python programming language. Python is
a high level programming language that is growing in popularity. As such, it is
useful to know python. There are many versions of pythons. For our purposes,
we will be using python version 3.8

Local installation
Read the first chapter in this book and get python installed on your computer
based on your system. This book is available online from Seneca Library:

https://senecacollege.primo.exlibrisgroup.com/permalink/01SENC_INST/
iq0dqm/alma997269205503226

For some assignments/labs we will make use of github's codespace which will
run a virtual machine in the browser. No setup will be needed for you when you
make use of codespace. All you will need is a modern web browser. You may
wish to have a way to run code spaces anyways.

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

https://senecacollege.primo.exlibrisgroup.com/permalink/01SENC_INST/iq0dqm/alma997269205503226
https://senecacollege.primo.exlibrisgroup.com/permalink/01SENC_INST/iq0dqm/alma997269205503226

The Basics
This section looks at the basics of Python programming.

Interpreted vs Compiled
Python is both interpreted and compiled but these terms are complicated.
JavaScript is an example of an interpreted language, where the source gets
turned into machine language as it runs. C/C++ are examples of languages
that are compiled. When you run a c++ compiler, the program doesn't actually
run, instead it translates your c++ code into executable that you can then run.

However Python is a little different. You can run a Python program without ever
compiling it. You can also compile a Python program but what you get isn't an
executable in the C/C++ sense which is compiled for your machine. Instead,
you get the program translated into bytecode. When you run the compiled
program, that byte code is translated into your computer's machine language.

The Python Shell
The Python shell allows you to run python code without saving it to a file. It can
be a quick way for you to test out some snippet of code. You can spin up a
python shell by typing python at the command prompt

Comments
Use # at start of line to create a comment

Basic Types and Variables
In C, when you declare a variable you have to state the data type of that
variable. You think about the variable as a name for an area of memory that
can hold stuff.

Unlike C, it is better to think of variables in python as labels. All variables have
a value association with it, you don't just go around declaring storage like you
do in C.

Naming rules:
Here are the naming rules:

• you can use letters, numbers and underscores in names
• variables names begin with letters and underscores, never numbers
• spacing is not allowed in variable names
• avoid python keywords for variable names

Naming Conventions:

• use snake case this_is_a_variable_name

• use lower case for variable names
• use ALLCAPS for constants.
• capitalize first word of class names without using _ between

ThisIsAClassName

this is a comment

Strings
Strings are created by using either double quotes or single quotes:

Since both are strings, the one you use could depend on what you want to say.
For example, if your statement involves an apostrophes, use double quotes

Similarly you if you need to use double quotes in your string, you can use
single quotes to declare it

If you need both.. you will need to use the escape \ character

Numbers
Just like C/C++ you can have integers or floating point values. Unlike C/C++
you don't specify the number of bits used to represent the numbers.

"this is a string"

'this is also a string'

"Python's string declarations are neato!"

'"Coffee is a way of stealing time that should by rights belong

to your older self" - Terry Pratchett'

"\"It’s still magic even if you know how it’s done\" - Terry

Pratchett"

To create an integer, write a number without decimal points

x is an integer

To create a floating point add a decimal point

y is a floating point

Numeric Operators

The following mathematical operators are available

• + - addtion
• - - subtraction
• * - multiplication
• / - division
• // - integer division
• % - modulus
• ** - exponent

Mathematical expressions

Mathematical expressions follow most of the same rules as C/C++ but there
are some differences:

• when using dividing 2 integers, C/C++ truncates the decimal points 14/5 =
2 for example. Python results in the floating point result of the division.

x = 5

y = 5.0

14/5 = 2.8
• the modulo operation % following proper mathematical mod rules when

dealing with negative values. In C/C++ it just negates the results. thus -9
% 5 = -4. In python, -9 % 5 = 1, because -9/5 = -1.8, taking the floor of this
gives -2. -2 * 5 + 1 = -9

• you can use _ to make it easier to specify the number x = 1_000_000_000

for example to specify 1 billion.

Selection
In general python selection is done using if/else type of statements. Pre python
3.10 there are no equivalency of a switch statement. It is recommended that
you keep to the if/else type of construct for selection.

In Python, indentation really matters. there are no brackets. If you want
something to be part of an if block, make sure they are indented the same way
inside the if statement.

For example, in C if you wrote:

the result output would be:

the indentation doesn't matter. You would normally wrap it all up using {} if

x=5;

if(x == 3)

printf("bananas\n");

printf("oranges\n");

oranges

you wanted to have both statements to be done when x == 3.

In python there are no brackets. Instead, if you indent both statements then
they are part of the if block. If you don't indent the second statement then it is
not.

Boolean expressions
Boolean expressions are thing that evaluate to True or False. Values of basic
types can be compared using ==, !=, <, <=, >, >=. For strings, the
comparison is alphabetical ordering, thus "apple" < "banana", but "Banana" <
"apple" (because "B" comes before "a")

Boolean operators:

In C/C++ the boolean operators &&, ||, ! are replaced by and, or , not

zero vs non-zero

zero is false, everything else is true. This is same as C/C++

Lazy Evaluation

Similar to C/C++, the boolean operators are lazily tested. This means that for a
boolean expression that uses an and expression, if the left operand is false,
the right operand will not be evaluated because the entire boolean expression
can never be true

Similarly when given an expression that uses an or expression, if the left
operand is true, the right operand will not be evaluated because the entire
boolean expression will never be false

def truthy():

results in:

Syntax:
An if statement

if/else statement

true or false result:

it's true!

false or true result:

it's false!

it's true!

true and false result:

it's true!

it's false!

false and true result:

it's false!

if <boolean expression>:

statement1

statement2

...

if <boolean expression>:

statement1

statement2

...

else:

statement3

if/else if/else if/...else

Lists
This is similar in nature to C++ arrays but also quite different at the same
time.

Unlike C++ arrays, when you declare a list, you do not specify a capacity. As
you add items, the list will grow as needed.

To use a list, declare a variable and initialize it with a list of values:

if <boolean expression>:

statement1

statement2

...

elif <boolean expression>:

statement3

statement4

...

elif <boolean expression>:

statement5

statement6

...

...

else:

statement7

statement8

...

my_list = [0, 2 , 3]

The other major difference between lists in Python and arrays in C++ is that
items in Python lists can be of different types. For example, in C++, you cannot
store integers and strings in the different elements of the same array. Every
element must be of the same type.

In Python, every element in the list can have a different type.

To access a particular element, you index into the list. Indexing starts at 0 just
like in C

This above code will output:

list assignments
When you assign a variable list to another list variable, duplicates are not
made, instead they are simply different names refering to the same list. This is
similar to how we might think about array assignments in C/C++

my_list = [1 , 2 , "hello", "world", 1.5]

my_list = [1 , 2 , "hello", "world", 1.5]

print(my_list[3])

world

list1 = [1,2,3,4]

list2 = list1

list2[1] = 50

print(list1) # output: [1, 50, 3, 4]

both list1 and list2 refer to the same list so any changes made through one list,
the other list is also modified

Dictionaries
A dictionary is a set of key-value pairs. To create a dictionary. Syntactically it
resembles the definition of JavaScript objects. The keys can be any basic types,
strings or numbers

A dictionary lets you find values based on keys quickly.

You can add to a dictionary by assignment

my_dictionary = {<key1>:<value>, <key2>:<value>...}

print(my_dictionary)

my_dictionary = {"key1": 5, "key2":6, 7:15}

print(my_dictionary["key1"]) # output 5

my_dictionary = {"key1": 5, "key2":6}

my_dictionary["key3"] = 7

print(my_dictionary["key3"]) # output 7

Iteration
For Loops
A for loop is a counting loop in python.

The above for loop is equivalent to the following in C/C++

Furthermore, you can also use it to iterate through lists:

While Loops

for variable in range(start,end):

...

for(int variable = start;variable < end; variable++){

...

}

my_list=[5, 4, 3, 2, 1]

for number in my_list:

print(number)

i = 1

while i < 10:

print(i)

A while loop can be very useful when there is no clear end... for example, if you
were trying to do interactive input until some criteria is met.

Functions
To declare a function in python use the following syntax

You can call the function by using the function name and supplying arguments
to the function

Classes
Classes allow you to create objects in python. There are however some subtle
differences in python

In python classes there is a special function that is used to initialize and define
the data within the class. So looking at code below, you will notice that the
data members are effectively declared in a special function called __init__

The function is named init with two underscores before and after the word. The
keyword self is the first argument followed by an argument list.

def function_name(argument_list):

...

class ClassName:

def __init__(self, argument_list):

self.attribute1 = ... # this is the equivalent of data

members

self.attribute2 = ... # in c++

You can create an inherited class in python by passing the base class into the
class declaration of the derived class.

class BaseClass:

def __init__(self, argument_list):

self.attribute1 = ...

self.attribute2 = ...

def function1(self, arguments):

...

class DerivedClass(BaseClass):

def __init__(self, argument_list):

super().__init__(arguments_for_attribute1_and_attribute2) #

notice you don't use self in this call

self.attribute3 = ...

def function1(self, arguments):

... # overrides base class function

def function2(self, arguments):

... # new function exclusive to derived class

Algorithms Analysis
What is Algorithms Analysis
When you write a program or subprogram you should be concerned about the
resource needs of the program. The two main resources to consider are time
and memory. These are separate resources and depending on the situation,
you may end up choosing an algorithm that uses more of one resource in order
to use less of the other. Understanding this will allow you to produce better
code. The resource to optimize for depends on the application and the
computing system. Does the program need to finish execution within a
restricted amount of time? Does the system have a limited amount of
memory? There may not be one correct choice. It is important to understand
the pros and cons of each algorithm and data structure for the application at
hand.

The amount of resources consumed often depends on the amount of data you
have. Intuitively, it makes sense that if you have more data you will need more
space to store the data. It will also take more time for an algorithm to run.

TIP

Algorithms Anaylsis does not answer the question "How much of a
resource is consumed to process n pieces of data"... the real question it
answers is "How much more of the same resource will it consume to
process n+1 pieces of data"

In other words what we really care about is the growth rate of resource
consumption with respect to the data size.

And with this in mind, let us now consider the growth rates of certain functions.

Measuring Resource
Consumption
Analysis of algorithms is about measuring the growth of resource consumption
as data size increases. Resources can be anything that has a limited supply.
The top two are time and memory but these are not the only ones.

Time Resource
Each operation that your program performs requires a small slice of time...
time to load the instruction, time to perform the operation, time to store the
result... The more operations you do, the more time it will take. Thus, one way
that we can measure the amount of time required by an algorithm is to
measure how many operations it performs.

When doing this, we make the assumption that every operation has the same
time cost. Given this assumption, addition and division would take the same
amount of time. This is not the case in reality but it is good enough for
analysis.

Memory Resource
The other big resource is memory. This is not calculated by operation count
because the number of operations doesn't always increase memory
consumption. However, we can still make a calculation on this based on
variable declarations, dynamically allocated memory etc.

Measuring Resources
To perform an analysis, the first thing we do is figure out mathematically how
much resources we consume. However, as stated in the introduction, this is not
a number... it is a mathematical expression that typically involves a variable for
the amount of data involved. This is because we can expect that the more data
we have the more resources get consumed... it takes more time to process
more data, it takes more memory to store more data. The real question is
really how much more.

Once we have this expression, we can then look at how the resource
consumption grows with respect to the size of the data.

Growth Rates
Growth Rates
Algorithms analysis is all about understanding growth rates. It is about
understanding the growth in resource consumption as the amount of data
increases. Typically, we describe the resource consumption growth rate of a
piece of code in terms of a function (a "curve"). To help understand the
implications, this section will look at graphs for some common growth rates
from most efficient to least efficient.

Constant
A constant resource need is one where the resource need does not grow. That
is processing 1 piece of data takes the same amount of resource as processing
1 million pieces of data. The graph of such a growth rate looks like a horizontal
line

Logarithmic
A logrithmic growth rate is a growth rate where the resource needs grows by
one unit each time the data is doubled. This effectively means that as the
amount of data gets bigger, the curve describing the growth rate gets flatter
(closer to horizontal but never reaching it). The following graph shows what a
curve of this nature would look like.

Linear
A linear growth rate is a growth rate where the resource needs and the amount
of data is directly proportional to each other. That is the growth rate can be
described as a straight line that is not horizontal.

Loglinear
A loglinear growth rate is a slightly curved line. the curve is more pronounced
for lower values than higher ones

Quadratic
A quadratic growth rate is one that can be described by a parabola.

Cubic
While this may look very similar to the quadratic curve, it grows significantly
faster

Exponential
An exponential growth rate is one where each extra unit of data requires a
doubling of resource. As you can see the growth rate starts off looking like it is
flat but quickly shoots up to near vertical (note that it can't actually be vertical)

Asymptotic Notation
Asymptotic notation are formal notational methods for stating the upper and
lower bounds of a function. They are the notations used when describing
resource needs. These are: O(f(n)), o(f(n)), Ω(f(n)), and Θ(f(n))
(Pronounced, Big-O, Little-O, Omega and Theta respectively). The f(n) inside
each of these notations is a description of a curve like we saw in the previous
section. They describe the shape of a line.

Formally
"T (n) is O(f(n))" iff for some constants c and n0, T (n) ≤ cf(n) for all n ≥ n0

"T (n) is Ω(f(n))" iff for some constants c and n0, T (n) ≥ cf(n) for all n ≥ n0

"T (n) is Θ(f(n))" iff T (n) is O(f(n)) and T (n) is Ω(f(n))

"T (n) is o(f(n))" iff T (n) is O(f(n)) and T (n) is NOT Θ(f(n))

TIP

iff is the mathematical shorthand for "if and only if"

Informally
"T (n) is O(f(n))" basically means that the function f(n) describes the upper
bound for T (n)

"T (n) is Ω(f(n))" basically means that the function f(n) describes the lower

bound for T (n)

"T (n) is Θ(f(n))" basically means that the function f(n) describes the exact
bound for T (n)

"T (n) is o(f(n))" basically means that the function f(n) describes the upper
bound for T (n) where f(n) will never actually be reached

Worst case, Best Case, Average
Case
The asymptotic notation system for bounds is often confused with the idea of
worst case, best case and average case. They are actually very different
things. Big-O does not describe a worst case, Omega does not describe a best
case. Big-O describes an upper bound on each of these cases. Similarly Omega
describes a lower bound on each of these cases. We should not mix up this
idea.

In practice, most of the time we deal with either worst case or average case.
We rarely ever consider best case. Each case can still have an upper
bound(big-O) or lower bound (Omega).

An easy way to think about
Asymptotic Notation
The math in algorithms analysis can be intimidating. One of the simplest ways
to think about algorithms analysis is that it is simply a way to apply a rating
system for your algorithms. It is like a audience rating for movies (G, PG, AA
etc.). In movies these ratings tell you whether or not the movie was intended
to for audieces of varying ages without you having to watch the movie first.

Similarly the resource consumption functions tells you the expected resource
consumption rate without you having to look at the actual code. It tells you the
kind of resource needs you can expect the algorithm to exhibit as your data
gets bigger and bigger. From lowest resource growth to highest resource
growth, the rankings are: O(1) , O(log n) , O(n) , O(nlog n) , O(n2) , O(n3) ,
O(2n). References will sometimes state the expected resource consumption.
For example, here is a screenshot of the reference page on c++ maps:

Notice the highlighted section in the above image. "...Search, removal, and
insertion operations have logarithmic complexity....". This statement means the
as you add more and more data to a map, the amount of time it takes to
perform search/remove/insert will grow in a logarithmic manner. That is, it will
take a doubling of the amount of data stored to increase the resource
consumption by 1. Effectively if we were to somehow calculate the time it
takes to do these operations as data gets added to the map, we will find that it
will grow like the curve below:

https://en.cppreference.com/w/cpp/container/map

Think about the graphs in the grow rate section. The way each curve looks.
Recognizing the impact that this will have is the most important thing to learn
about analyzing. That is the most important thing to understand about
algorithms analysis.

A closer look at the definition of
big-O
Mathematical definitions are typically exact. If you say that a < b then a is
always smaller than b... there isn't any room for anything else. What
asymptotic notations used in algorithms analysis do is relax this exactness. It
allows us to get an idea of resource usage without having to be completely
exact about it.

Let's take a closer look a the formal definition for big-O analysis

"T (n) is O(f(n))" iff for some constants c and n0, T (n) ≤ cf(n) for all n ≥ n0

Start with the first portion of the statement

TIP

"T (n) is O(f(n)) iff"

The above is portion is stating what we are defining. In other words, that part
says: In order for T (n) to be O(f(n)) it must meet the criteria set out in the
rest of the definition. It also gives you an idea of what pieces are involved with
the definition

• n is the size of the data set.
• T(n) is a function that describes the usage of a resource with respect to n

• f(n) is a function that describes a curve...logn, n, n2, etc.
• O(f(n)) means that the curve described by f(n) is an upper bound for the

resource needs of a function T(n)

The next part of the definition:

TIP

... for some constants c and n0,...

c and n0 refer to two values that are both constants. constants are values that
do not change with respect to n. No matter what n is, c and n0 must stay the
same. The exact values of c and n0 are not defined, but in order for the
definition to be true, we must be able to find a value for each of these
constants such that the rest of the statement is true. Note that it doesn't
matter what they are.. you can pick any value you want for these constants...
as long as the statement holds using them, you are fine.

TIP

...T (n) ≤ cf(n)...

This means that if we were to plot T (n) on a graph, the T (n) curve would fall
underneath some stretched (scaled by a constant) version of the f(n) curve.
What this means is that T (n) does not have to be under the specific curve
described by f(n). It is allowed to fall under a constantly scaled version of the
f(n). For example instead of having to be under an exact curve like n2 , it can
be under the 10n2 curve or even the 200n2 curve. In fact it can be any
constant, as long as it is a constant. A constant is simply a number that does
not change with n . So as n gets bigger, you cannot change what the value for
c . The actual value of the constant does not matter.

The last portion of the definition is:

TIP

... for all n ≥ n0

This is another relaxation of the mathematical definition. It means part of the
T (n) curve is allowed to actually be above the cf(n) curve. T (n) simply fall
under the cf(n) curve at some value of n (we call this point n0). and once it
falls under the cf(n) curve, it cannot go back above the curve for any value of
n greater than n0

In summary, when we are looking at big-O, we are in essence looking for a
description of the growth rate of the resource increase. The exact numbers do
not actually matter in the end.

Example 1: Analysis of
Linear Search
To look at how to perform analysis, we will start with a performance analysis of
the following C++ function for a linear search:

Python C++

Assumptions
Looking at the C++ code (the Python one has been described a bit differently

def linear_search(my_list, key):

for i in range(0, len(my_list)):

if my_list[i] == key:

return i

return -1

template <class TYPE>

int linearSearch(const vector<TYPE>& arr, const TYPE& key){

int rc=-1;

for(int i=0;i<arr.size()&& rc==-1;i++){

if(arr[i]==key){

rc=i;

}

}

return rc;

}

but has similar functionality,) we can see that there is a loop. The loop stops on
one of two conditions, it reaches the end of the array or rc becomes something
other than -1. rc changes only if key is found in the array. So, what are the
possibilities when I run this program?

1) key is not in the array... in that case loop stops when it gets to the end of the
array

2) key is in the array... but where? If it is at the front, then loop stops right
away, if it is in the back then it needs to go through all the elements... clearly
these will both affect how many operations we carry out.

The worst case scenario is that of an unsuccessful search... the loop will need
to run more times for that. If the search was successful however, where will the
key be? To perform an average case scenario, we need to consider the
likelihood of finding the key in each element. Now, making the assumption that
the key is equally likely to be in any element of the array, we should expect to
go through half the array on average to find key.

We will look at each of these in turn below

Analysis of an Unsuccessful Search
Let n represent the size of the array arr.
Let T(n) represent the number of operations necessary to perform linear search
on an array of n items.

Next we go through the code and count how many operations are done. We
can do this by simply adding a comment to each line with the total operation
count per line. That is we count how many operations are on that line AND the
number of times that particularly line is done.

Python C++

CAUTION

In python3, range() and len() are both constant. Further, range() calls are
done only once to determine the range() of values used for looping. This is
not the same as testing the continuation condition in C/C++ which
happens at top of every loop. Here, you loop through the entire range of
values

Where do the counts come from?

• Firstly, n is the length of the list.

def linear_search(my_list, key):

for i in range(0, len(my_list)): # n + 2

if my_list[i] == key: # n

return i # 0

return -1 # 1

def linear_search(my_list, key):

for i in range(0, len(my_list)): # n + 2 - reason: you

change the value of i each time you go through loop.

This change is done for

every value between from 0 to n-1 inclusive.

Thus, i is changed n

times in total. len() function call is constant,

range() in python3 is

also constant. Thus, we count those items as 1

each. range() is only

called once to get all the values loop must

Come up with the expression for T(n)

Recall that T(n) represents the total number of operations needed for an
unsuccessful linear search. As such, we get T(n) by summing up the number of
operations. Thus:

T (n) = n + 2 + n + 1

= 2n + 3

The 2n comes from the 2 operations that we do each time through the loop
(note that we have n elements in the list/array.) The +3 comes from the 3
operations that we always have to do no matter what (the loop runs n times
and causes 2n + 2 operations.)

Thus the expression for the number of operations that is performed is:

T (n) = 2n + 3

Now, imagine n becoming a very very large number. As n gets bigger and
bigger, the 3 matters less and less. Thus, in the end we only care about 2n . 2n

is the dominating term of the polynomial. This is similar to this idea. If you
had 2 dollars, then adding 3 dollars is a significant increase to the amount of
money you have. However, if you had 2 million dollars, then 3 dollars matter
very little. Similarly, in order to find something in an array with 2 million
elements by comparing against each of them, doing just 3 ops we need to do
to find the range, length of list, and return matters very little.

Using the dominating term, we can say that the linear search algorithm has a
run time that never exceeds the curve for n. In other words, linear search is
O(n)

Now... can we actually prove this?

According to the formal definition for big-O

" T (n) is O(f(n))" if for some constants c and n0, T (n) ≤ cf(n) for all n ≥ n0

In other words... to prove that T (n) = 2n + 3 is O(n) we must find 2 constants
c and n0 such that the statement T (n) ≤ cn is true for all n ≥ n0

The important part about this... is to realize that we can pick any constant we
want as long as it meets the criteria. For c , I can pick any number > 2. I will
pick 3 (there isn't a good reason for this other than 3>2), thus c = 3. I will also
pick 3 for n0. The reason is that starting at n == 3, 2n + 3 ≤ 3n

We can see this in the graph below. Here, we see T (n) = 2n + 3 (blue) as well
as the cf(n) = 3n (orange). At n==3, the line for 2n + 3 falls under 3n and it
never gets above it again as n gets bigger and bigger

Thus, we have proven that the function is O(n) because we were able to find
the two constants c and n0 needed for the T (n) to be O(n)

This is also the reason why it did not matter if we counted the [i] operator. If
we counted that operator, our function would be : T (n) = 3n + 3.

The dominating term would be 3n. We would need to pick a different c that is
greater than 3 and a different n0 but we would still be able to find these and
thus, T(n) is still O(n).

Analysis of a Successful Search
In the previous analysis, we assumed we wouldn't find the data and thus the
worst possible case of searching through the entire array was used to do the
analysis. However, what if the item was in the array?

Assuming that key is equally likely to be in any element, we would have to
search through n elements at worst (finding it at the last element) and 2

n

elements on average.

Now since we will at some point find the item, the statement inside the if will
also be performed while the return -1 will not.

If we assume that the worst case occurs and we do not find the item until we
get to the last element our operation count would be:

def linear_search(my_list, key):

for i in range(0, len(my_list)): # n + 2

if my_list[i] == key: # n

return i # 1

return -1 # 0

When we add up our counts, we would end up with the same function.

If we assume we will only search half the list.. then what would we get?

T(n) = n/2 + 2 + n/2 + 1 = n + 3

In this case, the dominating term is n. and thus T(n) is still O(n)

CAUTION

In the above code we are treating arr.size() function call as if its a constant
value or variable. This can be done only because the size() function in
vector class is constant. You can check this out here:
https://en.cppreference.com/w/cpp/container/vector/size under the
heading complexity. If the complexity was something else, we would need

def linear_search(my_list, key):

for i in range(0, len(my_list)): # n/2 + 2

if my_list[i] == key: # n/2

return i # 1

return -1 # 0

template <class TYPE>

int linearSearch(const vector<TYPE>& arr, const TYPE& key){

int rc=-1; //1

for(int i=0;i<arr.size()&& rc==-1;i++){ //1 + 5n

if(arr[i]==key){ //n

rc=i; //0

}

}

return rc; //1

}

https://en.cppreference.com/w/cpp/container/vector/size

to account for this in the analysis. For example, strlen() in cstring library
does not have a constant run time and thus we can't count it as one
operation

Where do the counts come from?

• int rc=-1; is only ever done once per function call, there is one operator
on that line, so the count is 1

• for(int i=0;i<arr.size()&& rc==-1;i++) int i=0 is only done once per
function call, so it is counted as 1, the other operations <, . (dot), &&, ==
and ++ happen for each loop iterations and since the loop happens n
times, each of those 5 operations are multiplied by n

• if(arr[i]==key) this is done every time we are in loop, loop runs n times,
so count as 1

• rc=i it is worth noting that because we are assuming our search is
unsuccessful, the if statement never evaluates to true, thus, this line of
code never runs. Thus, it is not counted

• return rc; like the first initialization statement this return statement only
happens once, so we count it as 1

Come up with the expression for T(n)

Recall that T(n) represents the total number of operations needed for an
unsuccessful linear search. As such, we get T(n) by summing up the number of
operations. Thus:

T (n) = 1 + 1 + 5n + n + 1

= 6n + 3

The 6n comes from the 6 operations that we do each time through the loop.
We have n elements in the array. Thus, the loop must run 6n times.

The +3 comes from the 3 operations that we always have to do no matter
what.

Thus the expression for the nu-mber of operations that is performed is:

T (n) = 6n + 3

Now, imagine n becoming a very very large number. As n gets bigger and
bigger, the 3 matters less and less. Thus, in the end we only care about 6n . 6n

is the dominating term of the polynomial. This is similar to this idea. If you
had 6 dollars, then adding 3 dollars is a significant increase to the amount of
money you have. However, if you had 6 million dollars, then 3 dollars matter
very little. Similarly if you had to find something in an array with 6 million
elements

Using the dominating term, we can say that the linear search algorithm has a
run time that never exceeds the curve for n. In other words, linear search is
O(n)

Now... can we actually prove this?

According to the formal definition for big-O

" T (n) is O(f(n))" if for some constants c and n0, T (n) ≤ cf(n) for all n ≥ n0

In other words... to prove that T (n) = 6n + 3 is O(n) we must find 2 constants
c and n0 such that the statement T (n) ≤ cn is true for all n ≥ n0

The important part about this... is to realize that we can pick any constant we
want as long as it meets the criteria. For c , I can pick any number > 6. I will
pick 10 (there isn't a good reason for this other than its bigger than 6, and the
math is easy to do in our head for the purposes of presenting this) c = 10. I will
also pick 1 for n0 ,

The following graph shows both T (n) = 6n + 3 (blue) as well as the cf(n) =
10n (orange). At some point, the line for 6n + 3 falls under 10n and it never
gets above it after that point.

Thus, we have proven that the function is O(n) because we were able to find
the two constants c and n0 needed for the T (n) to be O(n)

This is also the reason why it did not matter if we counted the operations for
the . operator or the [i] operator. If we counted both of them,

T (n) = 8n + 3

The dominating term would be 8n but this is still O(n).

The proof would go exactly the same way except that we can't use n0 = 1 as
the statement T (n) ≤ cn is not true when n = 1 . However, when n = 2 ,
T (n) = 19 and cn would be 20. Thus, it would be true and stays true for all
values of n > 2

Analysis of a Successful Search
In the previous analysis, we assumed we wouldn't find the data and thus the
worst possible case of searching through the entire array was used to do the
analysis. However, what if the item was in the array?

Assuming that key is equally likely to be in any element, we would have to
search through n elements at worst and 2

n elements on average.

Now since we will at some point find the item, the statement inside the if will
also be performed. Thus, we will have 4 operations that we must run through
once.

These other operations will also run for each iteration of the loop:

The difference is we do not expect that the loop would have to run through the
entire array. On average we can say that it will go through half of the array.

int rc = -1

int i = 0

rc=i

return rc;

i<arr.size() && rc == -1 --> 3 operations

i++ --> 1 operation

if(arr[i]==key) --> 2 operations

Thus:

T (n) = 6 ∗ 0.5n + 4 = 3n + 4

Now... as we said before... the constant of the dominating term does not
actually matter. 3n is still n . Our proof would go exactly as before for a search
where the key would not found.

CAUTION

One thing to note. If you flip between the python code and the C/C++
code, it would seem that the number steps is higher in the C/C++ version
of the code. However, this does not mean that the C/C++ version of the
code is slower. In fact generally speaking, you will find C/C++ code to run
faster than python due to the way it is optimized and the way it runs. This
is why any application where speed truly matters in real time is often
written in C/C++. So you cannot compare the two in this manner!
Algorithms analysis gives you performance only as a function of resource
consumption. it does not translate directly into wall clock time!

Example 2: Analysis of
Binary Search
The analysis of a binary search is not the same as that of linear search because
the loop of a binary search does not follow the pattern of going from the start
of the array all the way to the end. It starts in the middle of an array and jump
around. Not every element will be considered during the search process so this
will be a bit different.

INFO

A binary search can only be done to lists if two criteria are true:

1. the list must be sorted
2. access to any element given its position must have a constant run

time.

Python C++

def binary_search(my_list, key):

rc = -1

low = 0

high = len(my_list) - 1

while rc == -1 and low <= high:

mid = (low + high) // 2

if key < my_list[mid]:

high = mid - 1

elif key > my_list[mid]:

In the above code, there are two variables low and high. These represent the
first and last index of the elements where key may be located. In other words,
the only possible places key may exist is somewhere between my_list[low] and
my_list[high] inclusive. In each iteration of the while loop we check the middle
element between them. If key is smaller than the middle element, we move
the high marker so that it is to one element before the middle one. If key is
bigger, we move the low marker one element after the middle one. In other
words we eliminate half of the remaining possibilities of key's location after
each iteration of the while loop. We stop when we either find it or we have
eliminated all possible locations for key.

Analysis of an unsuccessful search
Similar to a linear search we should analyze the run time for what happens in
its worst case. In this case, it is also performing an unsuccessful search

Let n represent the size of the array

Let T(n) represent the number of operations needed to find key within the
array

In a binary search the following operators are done exactly one time:

The following are done for each iteration within the loop:

rc = -1

low = 0

high = len(my_list) - 1 # 1 operator here + 1 function call

return rc

Within the loop there is also an if/else if/else statement. there are 3 paths
through this statement. The path that would would lead the the highest
operation count would be to follow the else-if. The reason is that we would end
up doing both checks. and there are more operations in the else-if than the
else statement. Thus, we should use that pathway

Thus what we can say is that each time the loop runs, it will perform 10
operations at worst

rc == -1 and low <= high # 3 ops per iteration of loop

mid = (low + high) // 2 # 3 ops per iteration of loop

if key < my_list[mid]: # <---check this (1 op)

high = mid - 1 # <---skip, check fails

elif key > my_list[mid]: # <---check (1 op)

low = mid +1 # <---do this (2 ops)

else: # <---skip

rc = mid # <---skip

template <class TYPE>

int binarySearch(const vector<TYPE>& arr, const TYPE& key){

int rc=-1;

int low=0;

int high=arr.size()-1;

int mid;

while(low<=high && rc==-1){

mid=(low+high)/2;

if(key < arr[mid])

high=mid-1;

else if(key > arr[mid])

low=mid+1;

else

rc=mid;

In the above code, there are two variables low and high. These represent the
first and last index of the elements where key may be located. In other words,
the only possible places key may exist is somewhere between arr[low] and
arr[high] inclusive. In each iteration of the while loop we check the middle
element between them. If key is smaller than the middle element, we move
the high marker so that it is to one element before the middle one. If key is
bigger, we move the low marker one element after the middle one. In other
words we eliminate half of the remaining possibilities of key's location after
each iteration of the while loop. We stop when we either find it or we have
eliminated all possible locations for key.

Analysis of an unsuccessful search
Similar to a linear search we should analyze the run time for what happens in
its worst case. In this case, it is also performing an unsuccessful search

Let n represent the size of the array

Let T(n) represent the number of operations needed to find key within the
array

In a binary search the following operators are done exactly one time:

The following are done for each iteration within the loop:

int rc=-1;

int low=0;

int high=arr.size()-1;

int mid;

return rc;

Within the loop there is also an if/else if/else statement. there are 3 paths
through this statement. The path that would would lead the the highest
operation count would be to follow the else-if. The reason is that we would end
up doing both checks. and there are more operations in the else-if than the
else statement. Thus, we should use that pathway

Thus what we can say is that each time the loop runs, it will perform 10
operations at worst

Number of Loop Iterations
The next question then is to figure out how many times this loop will run. We
are of course assuming that the search will fail. Thus, the only way for this loop
to stop is for low<=high to become untrue.

When we started off we have n elements to search. After one iteration through
the loop we have approximately half of the original number of elements. After
one more iteration we eliminate another half of the remaining elements.

the last iteration would involve only 1 element because low == high == mid,
after that we would end up with low > high

low<=high && rc==-1 //<-- 3 ops

mid=(low+high)/2; //<-- 3 ops

if(arr[mid] > key) //<---check this (1 op)

high=mid-1; //<---skip, check fails

else if(arr[mid] < key) //<---check (1 op)

low=mid+1; //<---do this (2 ops)

else //<---skip

rc=mid; //<---skip

Lets look at the pattern of the relationship between number elements within
the search set and the iteration number.

Loop
iteration

Number of elements between low and
high inclusive (approx)

Denominator

1 n = 1
n 1 = 20

2 2
n 2 = 21

3 2
n /2 = 4

n 4 = 22

4 4
n /2 = 8

n 8 = 23

5 8
n /2 = 16

n 16 = 24

...

?? 1 =
n
n n = 2?

Now look at the exponent 2 was raised to in the denominator and the
relationship with its loop iteration. If we can find what we need to raise 2 to in
order to get n we will be able to find the number of iterations the loop will run.

By definition:

bx = a iff logba = x

In other words, x is the exponent we need to raise b to in order to get a . That
value is logba. Applied to our situation, the exponent we must raise 2 to in
order to get n would be log2n.

Our loop runs one time more than the exponent... thus our loop will run 1 +
logn time.

Putting these ideas together, we can summarize the operation counts as
follows:

Python C++

Adding it all up we find the following expression for T (n)

T (n) = 10(1 + logn) + 5

= 10 + 10logn + 5

= (10(logn)) + 15

The dominating term is 10(logn) . Thus, T (n) is O(logn)

def binary_search(my_list, key):

rc = -1 # 1

low = 0 # 1

high = len(my_list) - 1 # 2

while rc == -1 and low <= high: # 3 * (1 + log_n)

mid = (low + high) // 2 # 3 * (1 + log_n)

if key < my_list[mid]: # (1 + log_n)

high = mid - 1

elif key > my_list[mid]: # (1 + log_n)

low = mid + 1 # 2 * (1 + log_n)

else:

rc = mid

return rc # 1

template <class TYPE>

Adding it all up we find the following expression for T (n)

T (n) = 10(1 + logn) + 6

= 10 + 10logn + 6

= (10(logn)) + 16

The dominating term is 10(logn) . Thus, T (n) is O(logn)

How to do an analysis
in 5 steps
Doing mathematical analysis can be intimidating. However, what you are really
doing is simply explaining a thought process. This can be done in a fairly
consistent step by step manner. This section looks at the steps you should take
to do this and break down how to approach an analysis.

Step 0: It is good to start by
putting your code in.

INFO

If you are writing out an analysis for a lab or assignment, it is a good idea
to start by providing the snippet of the code you are analyzing so that you
have a reference.

Python C++

def factorial (number):

rc = 1

multiplying 1*x gives x, so we can skip it

for i in range(2,n+1):

rc = rc * i

return rc

TIP

If you are copying code into a markdown page, you can use surround the
code block with ``` to do a block quote.

To format according to a language provide the name of the language after
the third tick that precedes the block. For example:

``` cpp

put your code here. code will be c++ syntax formatted

```

``` python

put your code here. code will be python syntax formatted

```

Step 1: Establish variables and

unsigned int factorial (unsigned int n){

unsigned int rc = 1;

// multiplying 1*x gives x, so we can skip it

for (unsigned int i=2;i<=n;i++){

rc=rc*i;

}

return rc;

}

functions (mathematical ones):
INFO

Similar to writing a program you want to declare your variables and
function prototypes first. You need to do this to establish context...
variables need a meaning, functions need a meaning. You need to state
what they represent first. These statements need to be placed above
the code block

Let n represent the value we are finding the factorial for

Let T (n) represent number of operations needed to find n! using the code
below:

Step 2: Count your operations
INFO

In this step you are explaining how it is that you come up with your final
equation. Essentially, you are establishing the logic behind the
mathematical statement you will make in step 3

Put the operation count in a comment beside each line of the code blurb. The
loop runs n-1 times (i goes from 2 to n inclusive). Thus any operations that
occur in the loop is counted as n-1.

Python C++

Step 3: Establish the Mathematical Expression
for T(n)

INFO

Based on the counts from step 2, put together an expression for T(n) you
can even express the condition for when the expression is true... for
example

We add up the operation counts in the comments

T (n) = 1 + (n − 1) + 1 + 1 + 2(n − 1) + 1

def factorial (number):

rc = 1 # 1

for i in range(2,n+1): # (n-1) + 1 + 1

(n-1) loop

iterations

1 more for +

operator

1 more for call

to range function

rc = rc * i # 2 (n-1)

2 as there are

two operators

(n-1) as loop

runs n-1 times

return rc # 1

Step 4: Simplify your Equation

INFO

When you first write out your expression in step 3, the formula isn't always
a polynomial. You should start by simplifying your equation. You want to
establish a mathematical equation of the form:

T (n) = axnx + ax−1nn−1 + ax−2nn−2... + a1x + 1

T (n) = 1 + (n − 1) + 1 + 1 + 2(n − 1) + 1

= 3(n − 1) + 4

= 3n − 3 + 4

= 3n + 1

Step 5: State your final result.
Therefore, T (n) is O(n)

INFO

Once you have a polynomial, you can find the dominating term. This is the
term that, as n becomes bigger and bigger, the other terms become so
insignificant that they no longer matter. In this case the term is 3n.
Remove the constant 3. We don't need it because the definition of big-O
allows us to stretch the curve. Putting it in will make it look like you don't
understand the definition so typically you remove it.

unsigned int factorial (unsigned int n){

unsigned int rc = 1; // 1

for (unsigned int i=2;i<=n;i++){ // 1 + (n-1) + (n-1)

// 1 for i = 2

Step 3: Establish the Mathematical Expression
for T(n)

INFO

Based on the counts from step 2, put together an expression for T(n) you
can even express the condition for when the expression is true... for
example

We add up the operation counts in the comments

T (n) = 1 + 1 + (n − 1) + (n − 1) + 2(n − 1) + 1

Step 4: Simplify your Equation

INFO

When you first write out your expression in step 3, the formula isn't always
a polynomial. You should start by simplifying your equation. You want to
establish a mathematical equation of the form:

T (n) = axnx + ax−1nn−1 + ax−2nn−2... + a1x + 1

T (n) = 1 + 1 + (n − 1) + (n − 1) + 2(n − 1) + 1

= 4(n − 1) + 3

= 4n − 4 + 3

= 4n − 1

Step 5: State your final result.
Therefore, T (n) is O(n)

INFO

Once you have a polynomial, you can find the dominating term. This is the
term that, as n becomes bigger and bigger, the other terms become so
insignificant that they no longer matter. In this case the term is 4n.
Remove the constant 4. We don't need it because the definition of big-O
allows us to stretch the curve. Putting it in will make it look like you don't
understand the definition so typically you remove it.

Recursion
Introduction
Recursion is one of those things that some of you may or may not have heard
of / attempted. This section of the notes will introduce to you what it is if you
do not already know and how it works. Some of this will be review some will
not. Take your time to try and understand this process.

It is important to know at least a little recursion because some algorithms are
most easily written recursively. The text book sometimes only provide the
recursive version of an algorithm so in order for you to understand it, you will
need to understand how recursion works.

The Run-time Stack
The run-time stack is basically the way your programs store and handle your
local non-static variables. Think of the run-time stack as a stack of plates. With
each function call, a new "plate" is placed onto the stacks. local variables and
parameters are placed onto this plate. Variables from the calling function are
no longer accessible (because they are on the plate below). When a function
terminates, the local variables and parameters are removed from the stack.
Control is then given back to the calling function. Understanding the workings
of the run-time stack is key to understanding how and why recursion works.

Writing Recursive
Functions
Recursive functions are sometimes hard to write because we are not used to
thinking about problems recursively. However, if we try to keep the following in
mind, it will make writing recursive functions a lot simpler. There are two things
you should do:

1. state the base case (aka easy case). what argument values will lead to a
solution so simple that you can simply return that value (or do a very
simple calculation and return that value?

2. state the recursive case. if you are given something other than the base
case how can you use the function itself to get to the base case

3. Recursion is about stating a problem in terms of itself. The solution to the
current problem consists of taking a small step and restating the problem.

Example: The factorial function.
Write a function that is given a single argument n and returns n!. n! =
n*(n-1)*(n-2) ...2* 1. For example 4! = 4 * 3 * 2 * 1 , by definition, 0! is 1

How would you do it recursively?

Lets start with base case. What value of n is it easy to come up with the result
of n!?

0 is easy.. by definition 0! is 1. 1 is also easy because 1! = 1

Thus, we can establish that any value 1 or less is a base case with result of 1.

Now, the recursive case... how can we state factorial in terms of itself?

Let's consider this example:
5!

4!

= (5)(4)(3)(2)(1)

= (4)(3)(2)(1)

but consider another way to look at 5!

5! = (5)

4!

(4)(3)(2)(1)

Thus, we can express above as:

5! = (5)(4!)

And in gneral:

n! = n(n − 1)!

TIP

Recursion works by magic... ok it really doesn't but it might be easier to
think of it that way. Essentially what recursion does is it starts with the
idea that you already have a working function. (ie factorial already works).
The base case actually ensures it does work at least for some values of n.
The recursive case is simply using a working function to solve the

unsigned int factorial(unsigned int n) {

unsigned int rc = 1 ; //base case result

if(n > 1) { //if n > 1 we have the

recursive case

rc = n * factorial(n - 1); //rc is n * (n - 1)!

}

return rc;

}

problem. Don't think about it too much and it will be a lot easier to code.

How Does Recursion
Work?
To understand how recursion works, we need to look at the behaviour of the
run time stack as we make the function calls.

INFO

The runtime stack is a structure that keeps track of function calls and local
variables as the program runs. When a program begins, the main()
function is placed on the run time stack along with all variables local to
main(). Each time a function is called, it gets added to the top of the
runtime stack along with variables and parameters local to that function.
Variables below it become inaccessible. When a function returns, the
function along with its local variables are popped off the stack allowing
access to its caller and its callers variables.

Suppose we have the following program:

unsigned int factorial(unsigned int n) {

unsigned int rc = 1 ; //base case result

if(n > 1) { //if n > 1 we have the

recursive case

rc = n * factorial(n - 1); //rc is n * (n - 1)!

}

return rc;

}

int main(void){

Lets trace what happens to it with respect to the run time stack:

Program begins, main() function is placed on stack along with local variable x.

factorial(4) is called, so we push factorial(4) onto the stack along with local
variables n and rc.

n is 4, and thus the if statement in line 3 is true, thus we need to call
factorial(3) to complete line 4.

INFO

Note that in each function call to factorial on stack there is a value for n
and rc. Each n and rc are separate variables so changing it in one function
call on stack will have no effect on values held in other factorial function
calls on stack.

Now, the n is 3 which makes the if statement true. Thus, we make a call to
factorial(2).

Once again, the if statement is true, and thus, we need to call factorial(1).

Once we make this call though, our if statment is false. Thus, we return rc
popping the stack

Once it is returned we can complete our calculation for rc = 2. This is returned,

popping the stack

Once it is returned we can complete our calculation for rc = 6. This is returned,

popping the stack

Once it is returned we can complete our calculation for rc = 24. This is

returned, popping the stack

Analysis of a Recursive
Function
Performing an analysis of a recursive function is not all that different from
performing an analysis of a non-recursive function. We are still going to use the
same methodology to find a formula that will represent the number of
operations required for a given data size. We will then use that formula to find
a curve that best describes the resource usage growth rate.

Analysis of Factorial function
How would we perform an analysis on the following piece of code?

Start by declaring our mathematical variables and functions

Let n represent the number we are finding the factorial of

Let T (n) represent the number of operations it takes to find n! using our
recursive function

Similar to iterative version of our code, we will simply count our operations:

unsigned int factorial(unsigned int n){

unsigned int rc = 1 ; //base case result

if(n > 1) { //if n > 1 we have the recursive

case

rc= n * factorial(n-1); //rc is n * (n-1)!

}

return rc;

}

Now... by definition T (n) represents the number of ops our function (factorial)
requires/does when given n as its argument. But this also means that T (n − 1)
would represent the number of ops needed by our function to find (n-1)! (ie
number of operations performed by our function when n-1 is passed in as the
argument.

Thus, we can actually rewrite our count summary as follows:

unsigned int factorial(unsigned int n){

unsigned int rc = 1 ; // 1

if(n > 1) { // 1

rc= n * factorial(n-1); // 3 + number of ops done by

factorial(n-1)

// There are 3 operators, but it

also

// calls factorial(n-1) so we

must count

// not just 3, but also all ops

done by

//factorial(n-1)

}

return rc; //1

}

unsigned int factorial(unsigned int n){

unsigned int rc = 1 ; // 1

if(n > 1) { // 1

rc= n * factorial(n-1); // 3 + T(n-1)

}

return rc; //1

}

Now... how do we solve this though? So, lets start by looking at our base cases.
If n <= 1, we do exactly 3 operations:

In otherwords, we can say the following:

T (0) = 3
T (1) = 3

Remember that T is a function that represents how many operations our
function requires to find factorial of the argument n. So if argument was 0, it
takes 3 ops, if argument was 1, it takes 3 ops also. Notice how the analysis of
this coincides with the base case of the recursive function

For n >= 2, we do the following 6 operations + we need count number of ops
in the recursive call:

Thus, we can write the expression as following for the general T (n)for n >=2

T (n) = 6 + T (n − 1)

Now... by definition T(n) represents the number of ops needed to find n! using
our function. But this also means that T(n-1) would represent the number of

unsigned int rc = 1 ;

n > 1

return rc;

unsigned int rc = 1 ; <--- 1 op

n > 1 <--- 1 op

return rc; <--- 1 op

rc= n * factorial(n-1) <--- 3 operations, =, * and - ... also

need to count

number of ops done by factorial(n-1)

ops needed to find (n-1) factorial using our function. Thus,

T (n) = 6 + T (n − 1)

by the same token, we can say that

T (n − 1) = 6 + T (n − 2)
T (n − 2) = 6 + T (n − 3)

etc...

In other words T(n-1) = 6 + number of operations done by factorial(n-2).
Similarly T(n-2) = 6 + number of operations done by factorial(n-3)

The above statement is true for all values of n >= 2. However, we also know
that:

T (1) = 3 and T (0) = 3

Thus, what we have is:

T (n)

...

T (n)

= 6 + T (n − 1)

= 6 + 6 + T (n − 2)

= 6 + 6 + 6 + T (n − 3)

= 6 + 6 + 6 +6 + 3

There are a total of (n-1) 6's.We know this because we need to reach T(1) to
get the 3.

Thus:

T (n) = 6(n − 1) + 3 = 6n − 3

Thus, T (n) is O(n)

Drawbacks of
Recursion and Caution
Recursion isn't the best way of writing code. If you are writing code recursively,
you are probably putting on extra overhead. For example the factorial function
could be easily written using a simple for loop. If the code is straight forward
an iterative solution is likely faster. In some cases, recursive solutions are
much slower. You should use recursion if and only if:

1. the problem is naturally recursive (you can state it in terms of itself)
2. a relatively straight forward iterative solution is not available.

Even if both conditions above are true, you still might want to consider
alternatives. The reason is that recursion makes use of the run time stack. If
you don't write code properly, your program can easily run out of stack space.
You can also run out of stack space if you have a lot of data. You may wish to
write it another way that doesn't involve recursion so that this doesn't happen.
.

Searching and Sorting
Introduction
Searching is the process of finding particular piece of data (the key) within a
data structure. Sorting is the process of taking a set of data and creating an
ordering based on some criteria. In this section of the notes, we will be looking
at sorting a list of data which will help support certain methods of searching for
data within the list.

CAUTION

In this section of the notes, we will be refering to the data structure we are
searching and sorting as a "list". With some of these algorithms, we
specifically require the list to be array based/like as those algorithms
require you to have fast random access to any element given its index. For
simplicity, you can assume that the list we are talking about is array
based/like.

Types of lists that are "array based/like":

• Python lists.
• Vectors from the C++ standard library
• C++ arrays

List that are not "array based/like":

• list from C++ standard library

Python provides a number of built-in functions to perform searching and

sorting. However, a programmer should know how these functions work, not
just be able to call them.

This section of the notes will look at 2 different searching, and 5 different
sorting algorithms. A 6th sorting algorithm will be presented later in the
course.

Searching
Searching is the process of finding particular piece of data (the key) within a
data structure. Some data structures will support faster searching by the way
that the data is stored and organized.

In this section of the notes we are concerned with how to search a list. In
particular we are looking at lists that are array like. For example, Python lists
are "array like", as are vectors from the C++ standard library. The list from
C++ standard library however is not array based so this is not the type of list
we are considering in this chapter. What we want are data structures that
provide fast random access to any element given its index.

Linear Search
The linear search algorithm is a pretty standard algorithm that you have
probably written at some point in your previous programming courses. You
may not have called it linear search, but it is likely that you have written it.
Here we will formalize what the function does.

The linear search algorithm is given a list of values and a key. It returns the
first index of where the key is found or -1 if the key is not part of the list. We
use -1 to indicate the state of not finding the value because 0 is a perfectly
valid index into the list.

The code for this is pretty straight forward. Start at the beginning of the list
and search until you either find the item or you reach the end of the list.

Python C++

Performance of a linear search
A linear search has a run time of O(n). You saw this analysis in the algorithms
analysis part of the notes.

If you were to sort the array and then, perform a linear search (where you
would stop when you either find the key or find a value in the list that is bigger
than key,) it's not worth it as your overall cost will be more than O(n) (beacues
of sorting first!). Assuming that your key can be found anywhere in the array
(i.e. equal chance of being smallest/biggest/second smallest/etc.), finding a
value, on average, still requires that you go through half the array, and at the
worst case, the entire array. The search part of the process is still, therefore,
linear.

def linear_search(my_list, key):

for i in range(0, len(my_list)):

if my_list[i] == key:

return i

return -1

template <class TYPE>

int linearSearch(const vector<TYPE>& arr, const TYPE& key){

int rc=-1;

for(int i=0;i<arr.size()&& rc==-1;i++){

if(arr[i]==key){

rc=i;

}

}

return rc;

}

Binary Search
Binary search is a search that can only be performed on lists that are sorted
AND have random access to each of its elements.

Consider two different number guessing games:

In game 1 you are asked to guess a number between the values 1 to 1000.
After every guess you are told whether you are correct or incorrect. That is it,
no other information other than whether you are right or wrong.

In game 2 you are asked to guess a number between the values 1 to 1000.
After every guess you are told that the guess is either correct, too high, or too
low.

Which game is it easier to find the correct number?

In the first game, you are only told whether your guess was right or wrong.
Thus, any guess that you make can eliminate only one number from
consideration. Every other number is still possible. Initially you had 1000
options to choose from. After making a guess, if you are wrong, you have 999
options left to choose from. After two guesses, 998 possibilities. This is linear
search. After you look at one element, you eliminate the possibility that the
value is there... but it is possible for value to be in every other element.

In the second game, you are told that not only whether the guess is correct or
in correct but also whether the value is too high or too low. This allows you to
eliminate many more numbers. If you guess 500 as your first guess, then even
if the number is not 500, you can immediate either eliminate all numbers
bigger than 500 or all numbers smaller than 500. Repeatedly doing this,
always guessing at the middle of the remaining valid range will allow you to

continue to half the data set with each guess.

This is why the second game is much easier... you are zeroing in on the value
you want.

Preconditions of a binary search
To perform a binary search requires two things:

• the list must be sorted. This allows us to split the array into two pieces, one
where the key might be found and the other where the key definitely can't
be found.

• the second requirement is the list must allow fast random access (ie be
array-like). That is getting to any element of the list takes the same
amount of time. In the list from the C++ standard library this is not the
case.

The algorithm
The binary search algorithm goes like this: Track the range of possible indexes
by storing the first/last index where key may be found initially this is 0 and
(length of list) - 1. Calculate the mid point index between those first/last
indexes look at the value at the middle element if we found it we are done if
the key is smaller than middle element, then key can only be found between
first index and element before middle element. Thus, set last index to middle
index - 1. * if key is greater than middle element then key can only be found
after that middle element, thus set first index to middle index + 1

Python C++

def binary_search(my_list, key):

template <class TYPE>

int binarySearch(const vector<TYPE>& arr, const TYPE& key){

int rc=-1;

int low=0;

int high=arr.size()-1;

int mid;

while(low<=high && rc==-1){

mid=(low+high)/2;

if(key < arr[mid])

high=mid-1;

else if(key > arr[mid])

low=mid+1;

else

rc=mid;

}/*while*/

return rc;

}

Sorting
Sorting is the process of taking a set of data and creating an ordering based on
some criteria. The criteria must allow for items to be compared and used to
determine what should come first and second. For example you can sort
numbers. But even then, there is an ascending order (smaller numbers come
before the bigger ones) or a descending order (bigger numbers come before
the smaller ones). For other data, you can still have this kind of ordering. For
example for strings, you can have alphabetic ordering ("apple" comes before
"banana"). Anything that allows you to compare and say item A comes before
item B allows for sorting.

Regardless of what it is that we are basing the sorting on, the algorithms used
for sorting are the same. The only difference is the comparison operation. With
the comparison all we are doing is asking which item should come first.

In this section of the notes we will cover 5 sorting algorithms.

Simple Sorts
The first 3 sorting algorithms are fairly straight forward. They are all O(n2).
They are also the easiest to understand. We will give a brief description of each
below.

Bubble Sort
Bubble sort is called bubble sort because the algorithm repeatedly bubbles the
largest item within the list to the back/end of the list.

Algorithm
1. start with first pair of numbers
2. compare them and if they are not correctly ordered, swap them
3. go through every pair in list doing the above 2 steps
4. repeat the above 3 steps n-1 times (ie go through entire array n-1 times)

and you will sort the array

Animation
http://cathyatseneca.github.io/DSAnim/web/bubble.html

Implementation

Python C++

http://cathyatseneca.github.io/DSAnim/web/bubble.html

Selection Sort
Selection sort works by selecting the smallest value out of the unsorted part of
the array and placing it at the back of the sorted part of the array.

def bubble_sort(my_list):

n = len(my_list)

for i in range(n - 1):

for j in range(n - 1 - i):

if my_list[j] > my_list[j + 1]:

my_list[j], my_list[j + 1] = my_list[j + 1],

my_list[j]

void bubbleSort(int arr[],int size){

int tmp; /*used for swapping*/

int i;

int j;

for (i=0; i<size-1; i++) {

for (j=0; j<size-1-i; j++){

int next = j+1;

if (arr[next] < arr[j]) { /* compare the two

neighbors */

tmp = arr[j]; /* swap a[j] and

a[j+1] */

arr[j] = arr[next];

arr[next] = tmp;

}

}

}

}

Algorithm
1. find the smallest number in the between index 0 and n-1
2. swap it with the value at index 0
3. repeat above 2 steps each time, starting at one index higher than previous

and swapping into that position

Animation
http://cathyatseneca.github.io/DSAnim/web/selection.html

Implementation

Python C++

def selection_sort(my_list):

n = len(my_list)

for i in range(n - 1):

min_idx = i # record the index of the smallest value,

initialized with where the smallest value

may be found

for j in range(i + 1, n): # go through list,

if my_list[j] < my_list[min_idx]: # and every time

we find a smaller value,

min_idx = j # record its index

(note how nothing has moved at this point.)

http://cathyatseneca.github.io/DSAnim/web/selection.html

Insertion Sort
Insertion sort is called insertion sort because the algorithm repeatedly inserts a
value into the part of the array that is already sorted. It essentially chops the
array into two pieces. The first piece is sorted, the second is not. We
repeatedly take a value/number from the second piece and insert it into the
already sorted first piece of the array.

Algorithm
1. start with the second value in the list (note that the first piece/portion of

the list contains just the first value initially.)
2. put that value into a temporary variable. This makes it possible to move

void selectionSort(int arr[],int size){

int i,j;

int min; //index of smallest value in the unsorted array

for(int i=0;i<size-1;i++){

min=i;

for(int j=i+1;j<size;j++){

if(arr[j] < arr[min]){

min=j;

}

}

if(min!=i){

int tmp=arr[min];

arr[min]=arr[i];

arr[i]=tmp;

}

}

}

items into the spot the second value occupies at the time and this spot is
now considered to be an empty spot in the sorted piece/portion of the
array.

3. if, when compared with the last value in the first piece/portion of the list,
the value in the temporary variable should go into the empty spot, put it
in.

4. otherwise, move the last value in the sorted piece/portion part into the
empty spot.

5. repeat steps 3 to 4 until the value in the tempprary variable is placed
somewhere into the first sorted piece/portion of the array.

6. repeat steps 2 to 5 for every vakue in the second piece/portion/part of the
array until all values are placed in the first part.

Animation
http://cathyatseneca.github.io/DSAnim/web/insertion.html

Implementation

Python C++

def insertion_sort(my_list):

for i in range(1, len(my_list)):

curr = my_list[i] # store the first number in the

unsorted part of

of array into curr

j = i

while j > 0 and my_list[j - 1] > curr: # this loop

shifts value within sorted part of array

http://cathyatseneca.github.io/DSAnim/web/insertion.html

void insertionSort(int arr[],int size){

int curr;

int i, j;

for(i=1;i<size;i++){

curr=arr[i];

for(j=i;j>0 && arr[j-1] > curr;j--){

arr[j]=arr[j-1];

}

arr[j]=curr;

}

}

Merge Sort
The merge sort works on the idea of merging two already sorted lists.

If there existed two already sorted list, merging the two together into a single
sorted list can be accomplished in O(n) time where n is the combined length of
the two lists.

Thus, if we are able to take our original list, split it into two pieces and then
somehow get them into a sorted state, we can then use the merge algorithm
to put these two pieces back together.

The algorithm of exactly how we can do this is described below.

Algorithm:
Merge algorithm
Understanding the merge algorithm is an important step of understanding how
merge sort works.

The algorithm to merge already sorted list works like this

• create an empty merged list
• have a way to "point" at the first element of each of the two list
• compare the values being pointed at and pick the smaller of the two
• copy the smaller to the end of the merged list, and advance the "pointer"

of the list that the value came from
• continue until one of the list is completely copied then copy over

remainder of the rest of the list

Merge Sort Algorithm
The merge algorithm is an O(n) algorithm as we pick n items between two lists.
However, it depends on having two lists that are already sorted...So we must
first get a list into that state.

1. Start with the entire list
2. Split the list into two halfs
3. mergesort each half - this will result in two sorted lists
4. merge them together

Now... the above is clearly a recursive algorithm. The base case for this are
lists of size 0 or size 1. If you have an list that is 0 elements it doesn't exist so
we don't have to sort it. If a list is 1 element then that list is sorted.

Animation
http://cathyatseneca.github.io/DSAnim/web/merge.html

Implementation
The implementation of merge sort is split into 3 pieces, each piece is detailed
below.

mergeSort()
This is the mergeSort() function that the program calls. The recursive merge
sort has a complicated prototype, we hide the complexity by writing a function

http://cathyatseneca.github.io/DSAnim/web/merge.html

that will make the initial call. We also need a second list to store the merged
list. The sorting algorithm creates a temporary list once and passes that into a
recursive function to do all the work. The idea here is that we don't want to
allocate memory on each merge... instead we can just use one list that stays
around for the entire process.

Python C++

recursive merge sort
The recursive mergesort splits the list into two pieces, mergesorts each piece
then merge them together. While we speak about splitting up the list, the
reality is that the split is more conceptual than actual. We will use indexes to
indicate where one list begins and one list ends. Thus this function is not only
given the list but also the indexes to indicate where it begins and ends. The
function is also passed an empty list that we pass to merge function. This is

def merge_sort(mylist):

empty_list = [0] * len(mylist) # create an empty list for

merging. doing it once

is more efficient than

repeatedly creating it when merging

recursive_merge_sort(mylist, 0, len(mylist) - 1, empty_list)

call recursive mergesort

void mergeSort(int arr[],int size){

int* tmp=new int[size];

mergeSort(arr,tmp,0,size-1);

delete [] tmp;

}

done for efficiency.

Python C++

def recursive_merge_sort(mylist, first_index, last_index,

empty_list):

recursive merge sort. the base case occurs when

first_index >= last_index

that situation will only occur if the portion of the list

is size 0 or 1.

in either case, do nothing and exit function.

if first_index < last_index:

mid_index = (first_index + last_index) // 2

recursive_merge_sort(mylist, first_index, mid_index,

empty_list)

recursive_merge_sort(mylist, mid_index + 1, last_index,

empty_list)

merge(mylist, first_index, mid_index + 1, last_index,

empty_list)

void mergeSort(int arr[],int tmp[],int start,int end){

//if the array is more than one element big

if(start<end){

int mid=(start+end)/2;

mergeSort(arr,tmp,start,mid);

mergeSort(arr,tmp,mid+1,end);

merge(arr,tmp,start,mid+1,end);

}

}

The merge function
The merge function takes two sorted list and merge them together. However,
because we are merging together two sorted pieces of a list, rather than being
given individual lists, the function prototype must take in indexes to indicating
starting/ending points of these lists within the original list

Python C++

this function will merge two sorted pieces of an array into a

single sorted segment.

We will refer to the two smaller sorted pieces of lists as a

and b.

These are not true lists but rather pieces of mylist

list a starts at a_first_index and ends at b_first_index - 1

(inclusive)

list b starts at b_first_index and ends at b_last_index

(inclusive)

this function will merge them together using empty_list as

temporary storage

once it is merged together, it is copied back into mylist,

creating a single

sorted segment that starts at a_first_index to b_last_index

(inclusive)

def merge(mylist, a_first_index, b_first_index, b_last_index,

empty_list):

a_ptr = a_first_index # used to track value from a

b_ptr = b_first_index

empty_list_index = a_ptr

while (a_ptr < b_first_index) and (b_ptr <= b_last_index):

if mylist[a_ptr] <= mylist[b_ptr]:

/*function merges the two halfs of a sorted array together.

The arrays are defined from arr[startA]to arr[startB-1] and

arr[startB]

to arr[endB]*/

void merge(int arr[],int tmp[],int startA,int startB,int endB){

int aptr=startA;

int bptr=startB;

int idx=startA;

while(aptr < startB && bptr < endB+1){

if(arr[aptr] < arr[bptr]){

tmp[idx]=arr[aptr];

idx++;

aptr++;

}

else{

tmp[idx++]=arr[bptr];

bptr++;

}

}

while(aptr<startB){

tmp[idx]=arr[aptr];

idx++;

aptr++;

}

while(bptr < endB+1){

tmp[idx++]=arr[bptr];

bptr++;

}

//copy back into arr

for(int i=startA;i<=endB;i++){

arr[i]=tmp[i];

}

}

Quick Sort
This sort is fast and does not have the extra memory requirements of
MergeSort. On average its run time is O(n log n) but it does have a worst case
run time of O(n2)

The quick sort algorithm is a divide and conquer strategy where it will partition
an array into 3 parts: - all values smaller than a pivot value (more on this
later), the pivot, and all values larger than the pivot value

This partitioning algorithm is very fast and has an O(n) run time where n is the
size of the original partition.

By partitioning the array in this manner we are splitting a large array into 3
pieces. The pivots are correctly placed in the array. All values smaller than the
pivot are in the front part of the array. All values larger than pivot come after
the pivot.

This partitioning algorithm is then applied to the parts that are smaller/bigger
than pivot. The pivot is in the right place so no need to move it.

Once the partition is small enough, insertion sort is used to sort the very small
arrays. The point at which the partition becomes "small enough" is dependent
on the compiler but it is somewhere around the 16 to 32 element element
range.

Algorithm:
Partitioning Algorithm
1. Select a pivot. This pivot must be part of the partition. The pivot is to be

chosen randomly from the the values within the partition.
2. Move the pivot out of the way by swapping it with the value at the end of

the partition.
3. Go through list starting at the beginning. track the "end" of the smaller

partition. This is initially set to being 1 before start index of the partition
4. Every time you come across a value that is smaller than the pivot you

advance the "end" of the smaller partition by 1 and swap the value with
whatever is there. This will effectively place all values smaller than pivot at
the front of the array

Quick Sort Algorithm
1. if list is small, perform insertion sort. This is the base case
2. if the list is not too small, partition the list using the partitioning algorithm

described above. This will split the list into 3 pieces, all values smaller than
the pivot, the pivot, values greater than pivot

3. quick sort the piece that is smaller than pivot and the piece that is larger
than the pivot.

Implementation
The implementation of quick sort has 4 components. Each of these are detailed
below

quick sort
This function is similar in nature to the merge sort function. Its job is to provide
a simple interface to the user. The actual work is done in the recursive
quicksort function

Python C++

Recursive Quicksort
This is the recursive quick sort algorithm. THRESHOLD is a constant. When a
partition's size falls below the THRESHOLD value, insertion sort is performed.
This serves as the base case for recursive quick sort.

If the partition size is larger than the threshold, we pick partition the array,
returning the location of the pivot. After this, we quick sort the remaining parts
of the array.

Python C++

def quick_sort(mylist):

recursive_quick_sort(mylist, 0, len(mylist) - 1) # call

recursive quicksort

void quickSort(int arr[],int size){

quickSort(arr,0,size-1);

}

def recursive_quick_sort(mylist, left, right, THRESHOLD=32):

if right - left <= THRESHOLD:

insertion_sort(mylist, left, right)

else:

pivot_position = partition(mylist, left, right)

recursive_quick_sort(mylist, left, pivot_position - 1)

recursive_quick_sort(mylist, pivot_position + 1, right)

insertion sort
This is a modified version of the insertion sort algorithm. Instead of sorting the
entire list, it sorts a piece of the list as defined by the indices passed to the
function

Python C++

void quickSort(int arr[], int left, int right){

if(right-left <= THRESHOLD){

insertionSort(arr,left,right);

}

else{

int i = partition(arr,left,right);

quickSort(arr,left,i-1);

quickSort(arr,i+1,right);

}

}

def insertion_sort(mylist, left, right):

for i in range(left + 1, right + 1):

curr = mylist[i] # store the first number in the

unsorted part of

of array into curr

j = i

this loop shifts value within sorted part of array to

open a spot for curr

while j > left and mylist[j - 1] > curr:

mylist[j] = mylist[j - 1]

j = j - 1

mylist[j] = curr

Partitioning Function
This is the fast partitioning algorithm that splits up the array according to a
pivot value

Python C++

/*performs the insertion sort algorithm on array from index left

to index right inclusive.*/

void insertionSort(int arr[],int left,int right){

int curr;

int i, j;

for(i=left+1;i<=right;i++){

curr=arr[i];

for(j=i;j>left && arr[j-1] > curr;j--){

arr[j]=arr[j-1];

}

arr[j]=curr;

}

}

import random

def partition(mylist, left, right):

choose a random index between left and right inclusive

pivot_location = random.randint(left, right)

get the pivot

pivot = mylist[pivot_location]

move the pivot out of the way by swapping with

last value of partition. This step is crucial as pivot will

end up "moving" if we don't get it out of the way which will

int partition(int array[],int left, int right){

//choose a random index between left and right inclusive

int location = left + (rand()%(right-left+1));

//get the pivot

int pivot = array[location];

//move the pivot out of the way by swapping with

//last value of partition

array[location] = array[right];

array[right] = pivot; //move the pivot out of the

way

int i=left-1;

for(int j=left;j<right;j++){

if(array[j]<=pivot){

i=i+1;

int tmp=array[i];

array[i]=array[j];

array[j]=tmp;

}

}

//restore pivot so that it is just after i

int tmp=array[i+1];

array[i+1]=array[right];

array[right]=tmp;

return i+1;

}

Lists
A list is an sequence of values. It may have properties such as being sorted/
unsorted, having duplicate values or being unique. The most important part
about list structures is that the data has an ordering (which is not the same as
being sorted). Ordering simply means that there is an idea that there is a "first"
item, a "second" item and so on. The position within the list where a piece of
data is stored may be as important a piece of information as the data itself.

It should be noted at this point that the list we are speaking of here is not the
same as a list in Python or a list from the C++ STL. A list here is much more
general.

Lists typically have a subset of the following operations:

• initialize
• add an item to the list
• remove an item from the list
• search
• sort
• iterate through all items
• and more...

A list may implement only a subset of the above functionality. The description
of a list is very general and it can be implemented in a number of different
ways.

Two general implementation methods are the array method or the linked list
method. We will look at each in turn.

What are Linked Lists?
This section provides you with a high level introduction to the linked list data
structure.

If you have ever used a list from the C++ STL, that is implemented as a linked
list... so while you may not have actually implemented it, you might have used
it. However there are definitely some important issues to consider when using
a linked list. This section will provide a brief introduction to linked list and its
concepts. Note that Python list is not linked list based.

Introduction
A linked list is a data structure that stores a collection of data objects in a
sequential manner. Each data object in list is stored in a node. Each node
consists of a single data object along with at least one pointer to another node,
typically the next node within the list. The linked list object itself must contain
a pointer to a node within the list that will allow access to every other node by
following the pointers in the node. Usually this is a pointer to the first node in
the linked list.

If you wanted to store an array of 5 numbers in an array this is what the array
would look like:

A simple linked list that stores the same 5 numbers in the same sequence

would look like this

The above is a singly linked list. It is called this because there is a single
pointer out of each node to another node.

CAUTION

Note that while the above diagram only has a single pointer out of the
linked list object itself, it is not part of the definition of a singly linked list.
The single link only refers to the link from one node to another, the fact
there is only one link to the set of nodes.

Due to the way they are implemented, it is very fast to reach the first node in
the linked list. However, to get to any other node, we must iterate through the
list from node to node. Thus to get to the 5th node, we have to start at the first
and follow the next pointers until we reach the 5th one.

This is different from an array. When you have an array, if you wanted to
access the 5th item in the array, you would simply access array[4] which can
be done in constant time because under that array is a mathematical
calculation that is not affected by the array size.

Typical Operations
To look at how to implement a linked list, the operations a linked list can do
should be considered. A linked list can typically support some subset of the
following operations.

• push_front - add an item to the front of the linked list
• push_back - add an item to the back of the linked list
• pop_front - remove the frontmost item from the linked list
• pop_back - remove the backmost item from the linked list
• insert - given a point within the list insert an item just before that point
• erase - remove a node at a specific point within the list
• erase(a,b) - erases all nodes between a and b
• traversals - some operation that applies to every node in the list

Enhancements
To support the above operations, a linked list typically will store more
information than the basic list. We will detail these in the implementation
section

List Implementation
There are two typical ways to implement a list. The first is to use an array like
data structure, the second is to use a linked list data structure (more on this
below). The python builtin list structure is array based, while the C++ STL list
is linked list based.

There are advantages and disadvantages to each implementations. Depending
on the use case, there may be advantages with one implementation vs
another.

Array based Implementation
Advantages

• items are stored in memory consecutively and you can have direct access
to any particular item through the use of its index in constant time.

• When sorted, the list can be searched using binary search, providing a
speedy search through large data sets.

Drawbacks
• space is often wasted as arrays are typically created bigger than needed.
• Insertion into anywhere other than the very end of the array is an

expensive operation as it requires the shifting of all values from the point
of insertion to the end of the array.

• Removal of any value anywhere other than the very last item is also
expensive as it also requires a shift in all items from the point of removal to
the very end of the list.

• growing the array can be amortized (average out the linear cost of single
grow() spread out over all list operations) to O(1), but when it does occur,
that one single call to grow at that moment is linear, this may need to be
considered if list is used in an application that has latency restrictions.

Linked list Implementation
Advantages
A linked list is an implementation that stores data in nodes. These nodes are
linked together one after another.

• Linked lists are very easy to grow and shrink as nodes only exist if there is
data stored in them. When you grow the linked list, old nodes do not need
to be duplicated as part of the grow process.

• Nodes are only created if there is data to store. No need to preallocate
extra space

• Data is not stored in consecutive memory locations so a large block of
contiguous memory is not required even for storing large amounts of data.

• Both insertion and removal of any node in the list (assuming that the

position of the insertion/removal is known) can be very efficient and runs in
constant, O(1) time as it would only require a change of a few pointers.
Exactly how long it takes depends on the type of linked list and the exact
operations being performed. The key however is that when values are
added or removed from a linked list, other values in the list are not moved
around.

Drawbacks
• Each piece of data requires the storage of at least one extra pointer. When

an array is full, it uses less memory than a linked list of the same size.
Furthermore, if the data being stored in each node doesn't require much
memory, then the pointer cost relative to the data stored can be
significant. For example, an integer takes just as much room to store as a
pointer. If you have a singly linked list of integers, the storage of each
piece of data is double that of storing it into an array. Thus any array that is
more than 50% full is storing more integers with same amount of storage
as a singly linked list with the same amount of data.

• A linked list cannot be searched using binary search as direct access to
nodes are not available.

• Data is not necessarily stored consecutively, this will mean that hardware
advantages such as caching won't apply. If your program requires you to
do something with all the data in the list, this can have significant impact
on performance.

Memory Requirements
To implement a list using arrays, we allocate more space than is necessary. The
array is used until it is full. Once an array is full, either all new insertions fail
until an item is removed or the array must be reallocated. The reallocation

https://en.algorithmica.org/hpc/cpu-cache/

typically involves creating a larger array, copying over the old data, and
making this the array. In order to amortize the cost of the grow operation over
many list operations, implement the grow() by doubling the size of the array.

CAUTION

Growing an array can be an expensive operation which may require the
duplication of all n elements of the array. Growing by some constant
number of elements ensures poor performance. Always double.

To implement a list using a linked list like structure, each value is put into its
own data node. Each node in the list is then linked with the next node by
storing the address of the next node in the list. The memory usage in this case
is at least one extra pointer for each piece of data. However, nodes are created
on an as needed basis. There are never have unused nodes. Thus, the amount
of memory used to store data in a linked list structure is typically lower than an
array until the array is nearly full.

Implementation
Concepts
To understand how to implement a linked list, we will want to look at the parts
we will need to implement in order to create one.

Nodes
The basic unit of storage for a linked list is a node. A node stores data and one
or more pointers to other nodes. At its most basic, a linked list node consists of
data plus a pointer to the next node in the linked list. It is possible for a node to
also store a pointer to the previous node in the linked list.

A linked lists where each node contains only a single pointer to the next node
is called a singly linked list.

A linked list where each node contains two pointers one to the next node and
one to the previous node is called a doubly linked list.

TIP

The idea of storing data in a node is not unique to linked lists. Other data
structures such as trees also store data in nodes

Iterators
Iterators allows you to traverse a container class without actually knowing
what the underlying container actually is or how that container may be

implemented. You can observe their usage in container classes within the C++
Standard Library such as <vector> and <list>. You can also see it in Python list
and dictionaries. A linked list is a container class. Thus, our implementation of
a linked list should also include the concept of iterators. Iterators also allow us
to traverse the list in various ways (backwards and forwards for example). The
idea is simply to separate the thing that allows us to go through a list with the
underlying data structure

Iterators should support the following functionalities at minimum. Note that
these are just general ideas. They are not language specific:

• first - set iterator to refer to the first item in a container
• next - sets iterator to the next item in the container
• isDone - returns true if iterator is not refering to anything
• currentItem - returns the current piece of data

When thinking about iterators, the important concept is that an iterator lets us
go through a container one data item at a time. It provides a uniform method
to go through the container and access the data. While you may view it as
being similar to a node pointer, it is not the same. To the user of the list, there
should be no such thing as a node. They only have iterators. This is really
important to remember.

CAUTION

An iterator is NOT a node, a linked list or a pointer to these. An iterator
essentially hides the fact that there are even nodes within our linked list. It
provides access to a set of data stored within a container in a uniform
manner. It limits the type of access allowed to only some operations. We
use iterators so that there is a familiarity to how we would access our
custom container classes. That is we make them work in a similar manner
to those containers that are part of the language.

Linked List
And finally we have the concept of the linked list itself. This particular object
holds very little data within itself. The only data that is absolutely required is
the location of a single node in the list, the node that allows you to follow links
to every other node. Usually this is the first node in the list but it does not have
to be the first node. This largely depends on the type of list we are coding and
what we are trying to achieve.

Implementation - List
and Nodes
A linked list is a container class. This means that the operations of a linked list
are not affected by the types of data it may store. In C/C++ we would
implement this using templates. In Python, we really don't have to worry about
this. Our implementation will be a partial implementation of a doubly linked list
with iterators. This section should be read as a guide on how to implement a
linked list. It will start with ideas and diagrams then move on to show the
implementation of the idea.

Linked List
A linked list object (we will call ours DList as it will be a doubly linked list), must
store at least one pointer to the first node within the linked list. However, to
speed up the implementation of certain functions, it is advantageous to store a
pointer to the last node also.

Python C++

class LinkedList:

def __init__(self):

self.front = None

self.back = None

Nodes
A node is the object that stores the data. An instance of a linked list does not
hold any nodes itself. It instead points to a set of nodes that are linked
together. Each node object contains a piece of data and two pointers.

template <typename T>

class DList{

Node* front;

Node* back;

...

};

The idea of nodes are not unique to linked lists. Other container classes such
as trees can also have nodes. As the lists may actually be used in conjunction
with other container classes, we will want to hide our nodes. This is not just
hiding the data within the node but rather hide the idea that nodes even exist
at all. To do this, we will declare the node within the DList class itself. Aside
from declaring data members, it is also a good idea to provide a constructor
with defaults to simplify the creation of Nodes.

Python C++

TIP

In python we use None in place of a nullptr in C++. the None is
represented as a "zero" with a slash in the diagrams

INFO

Above, you see the use of None which is python equivalent to a nullptr in
C++. The None is a value to indicate that the reference refers to nothing.
Any reference should always either refer to some object or it should be
None. Checking to see if a reference is None means you are checking to
see if it refers to nothing. None is considered to be False equivalent. That
is if a reference is set to None and you check that reference, it will result
in False.

class LinkedList:

class Node:

def __init__(self, data, next=None, prev=None):

self.data = data

self.next = next

self.prev = prev

def __init__(self):

self.front = None

self.back = None

ref = None

if(ref):

print("reference refers to something")

else:

print("reference refers to nothing (None)")

In C++ we declare the Node so that it is private to DList. As the Node is private
to only DList, we will not need to make the Node a class. A struct will be fine
and provide simpler access. This private declaration of the Node struct will also
mean that outside of the DList class, there is no knowledge of the Node which
is what we want.

INFO

Above, you see the use of nullptr which is short for null pointer. The
nullptr is a value to indicate that the pointer points to nothing. Any
pointer should always either point to some object of its data type or to
nullptr. Checking to see if a pointer is nullptr means you are checking to
see if it points to nothing. nullptr is considered to be false equivalent.
That is if a pointer is set to nullptr and you check that pointer, it will
return false.

template <typename T>

class DList{

struct Node{

T data;

Node* prev;

Node* next;

Node(const T& dat=T{},Node* nx=nullptr,Node* pr=nullptr){

data=dat;

prev=pr;

next=nx;

}

};

Node* front;

Node* back;

...

};

Linked List Constructor
The constructor of the linked list should set up the linked list object in a
manner that indicates that there are no nodes within the linked list. This is
fairly simple to implement and only requires that we initialize front_ and back_
to nullptr

ptr=nullptr;

if(ptr){

cout << "pointer points at something" << endl;

}

else{

cout << "pointer points at nothing (nullptr)" << endl;

}

template <typename T>

class DList{

...

public:

DList(){

front=nullptr;

back=nullptr;

}

...

}

push_front and
pop_front
Implementation - push_front(),
pop_front()
This section of the notes walks through the implementation of push_front() and
pop_front()

Python C++

push_front(data)
The push_front function adds a node to the front of the linked list. As with all
insertion of nodes, the process can be generally described in the following
manner:

1. create a new node with the appropriate data
2. link the new node up with the rest of the list

Let us start by considering how this would work in a general linked list. The
steps are:

Step 1: Create new node, next node is the current front of list, there is no
previous node which means that next node's prev should be set to a nullptr:

Step 2: Make the previous node of the current front of list point to the new
node

Step 3: Make the front pointer point to the new node

Putting this together in code:

Does above always work?

Now lets consider if the following would work if we started off with a linked list
that is empty.

Step 1:

nn = self.Node(data, self.front)

self.front.prev = nn

self.front = nn

Step one will run without problems

Step 2:

self.front is None, so self.front.prev will crash. Thus, it looks like we need to skip
this step or do something different if we have an empty list

Step 3:

The above will work. However, if we were to simply skip step 2, our linked list
would not be valid as back would not be correctly set. The node we just added
is not only the first node in the linked list but also the last. To make this work,
we should add code to make back point to nn.

Putting all this together, The final function would look like the following:

pop_front()
The pop_front() function removes the first node from the linked list. The
following are the general steps to remove a node:

def push_front(self, data):

nn = self.Node(data, self.front)

if self.front is None:

self.back = nn

else:

self.front.prev= nn

self.front = nn

1. check to make sure that the list isn't empty (or that the node to be
removed actually exist).

2. unlink the node to be remove from the list (ensure other nodes are not lost
in the process)

3. deallocate the memory for the node

Given the above steps, let us consider how this would work in the general
case. The steps for performing a pop_front are:

Step 1: Check to make sure list isn't empty. If it is do nothing. Otherwise
continue to next steps

Step 2: Make a local pointer point to the first node in the list (hold this node so
we don't lose it by accident)

Step 3: Make the front pointer point to the second node

Step 4: Make the new front node's previous pointer a nullptr

The code snippet to do this is:

if self.front is not None:

Does the above always work?

The snippet of code above works for the general linked list and empty linked
lists. However, does it always work? Let us consider the following situation. If
we only had one node left in the list, would the above snippet still work?

If we perform the four steps inside the if statement from the above snippet,
this is what we will see:

Step 2:

Above looks fine.

Step 3:

This also looks correct

Step 4:

If we were to try to do the above at this point we would end up crashing the
program as front is currently nullptr. This step will either need to be skipped for
lists with just one node or something differnt will need to be done

The list is not in a valid state. We have a back pointer that points to the

memory location of the node that should be deallocated. This pointer is
therefore invalid. For lists with just one node, we must also adjust the back
pointer to a nullptr/None (as the list should get empty after removing its only
node.)

Putting all this together our pop_front() function should look something like
this:

push_front(data)
The push_front function adds a node to the front of the linked list. As with all
insertion of nodes, the process can be generally described in the following
manner:

1. create a new node with the appropriate data
2. link the new node up with the rest of the list

Let us start by considering how this would work in a general linked list. The
steps are:

Step 1: Create new node, next node is the current front of list, there is no
previous node which should be set to a nullptr

def pop_front(self):

if self.front is not None:

rm = self.front

self.front = self.front.next

if self.front is None:

self.back = None

else:

self.front.prev = None

del rm

Step 2: Make the previous node of the current front of list point to the new
node

Step 3: Make the front pointer point to the new node

Putting this together in code:

Does above always work?

Now lets consider if the following would work if we started off with a linked list
that is empty.

Step 1:

Node* nn = new Node(data,front);

front->prev=nn;

front=nn;

Step one will run without problems

Step 2:

front is nullptr, so front->prev will crash. Thus, it looks like we need to skip this
step or do something different if we have an empty list

Step 3:

The above will work. However, if we were to simply skip step 2, our linked list
would not be valid as back would not be correctly set. The node we just added
is not only the first node in the linked list but also the last. To make this work,
we should add code to make back point to nn.

Putting all this together, The final function would look like the following:

void push_front(const T& data){

Node* nn = new Node(data,front);

if(front){

front->prev=nn;

}

else{

back=nn;

}

front=nn;

}

pop_front()
The pop_front() function removes the first node from the linked list. The
following are the general steps to remove a node:

1. check to make sure that the list isn't empty (or that the node to be
removed actually exist).

2. unlink the node to be removed from the list (ensure other nodes are not
lost in the process)

3. deallocate the memory for the node

Given the above steps, let us consider how this would work in the general
case. The steps for performing a pop_front are:

Step 1: Check to make sure list isn't empty. If it is do nothing. Otherwise
continue to next steps

Step 2: Make a local pointer point to the first node in the list (hold this node so
we don't lose it by accident)

Step 3: Make the front pointer point to the second node

Step 4: Make the new front node's previous pointer a nullptr

Step 5: deallocate the node we are removing

TIP

delete p; does not deallocate the pointer p itself. Rather it deallocates
what the pointer points at. Thus, delete rm; deallocates the node rm
points at.

The code snippet to do this is:

TIP

A common misconception is that when you declare a pointer, you must

if(front){

Node* rm = front;

front=front->next;

front->prev=nullptr;

delete rm;

}

use new. Unless you are trying to create an instance of the object, you do
not need to use new. If you are using the pointer to simply refer to
something that exist (like rm in the code above), there is no reason to use
new and in fact, if you used new, you would end up with a memory leak.

Does the above always work?

The snippet of code above works for the general linked list and empty linked
lists. However, does it always work? Let us consider the following situation. If
we only had one node left in the list, would the above snippet still work?

If we perform the four steps inside the if statement from the above snippet,
this is what we will see:

Step 2:

Above looks fine.

Step 3:

This also looks correct

Step 4:

If we were to try to do the above at this point we would end up crashing the
program as front is currently nullptr. This step will either need to be skipped for
lists with just one node or something differnt will need to be done

Step 5:

The final line is to delete the node, which won't crash. However, the list is not
in a valid state. We have a back pointer that points to the memory location of
the node that has now been deallocated. This pointer is therefore invalid. For
lists with just one node, we must also adjust the back pointer to a nullptr as the
list is now empty

Putting all this together our pop_front() function should look something like
this:

void pop_front(){

if(front_){

Node* rm = front;

front=front->next;

if(front==nullptr){ //if only one node exists

back=nullptr;

}

else{

front->prev=nullptr;

}

delete rm;

Modification - Sentinel
Nodes
Consider the push_front()/pop_front() example we did early. Both functions
required us to check for a special case and essentially write 2 different versions
of the same function for those special cases (inserting into an empty list,
removing from a list with only one node). One modification we can make to our
linked list in order to simplify the functions is to add the idea of sentinel nodes.

Sentinel nodes are nodes that exist at the front and back of a linked list. These
nodes always exist from the time the linked list is created to the time it is
destroyed. They do not hold any data. The purpose for their existence is to
eliminate most of the special cases when writing functions.

Most of the special cases in our implementations involve checking whether the
front_/back_ pointers or next_/prev_ pointers are nullptr/None at the time or
not. Sentinel nodes can help us dealing with these situations more easily by
preventing these from happening, and let us have our code more simplified. In
this section we will look at what it means to have sentinel nodes.

Linked List Constructor - With
Sentinels
The constructor of the linked list should set up an empty linked list. With
sentinels, this effectively means we create two nodes whose data is undefined
and point them at each other. One is the front sentinel the other the back
sentinel. These nodes do not hold any data. Their purpose is to reduce special
cases.

Empty linked lists for linked lists with sentinels will have 2 nodes. The front
sentinel and the back sentinel. These are created on list construction.

Python C++

class LinkedList:

class Node:

def __init__(self, data, next=None, prev=None):

self.data = data

self.next = next

self.prev = prev

def __init__(self):

self.front = self.Node(None)

push_front()

How will push_front change with sentinels?

Step 1: Create new node, next node is the node that follows the front sentinel.
The previous node is the front sentinel.

Step 2: Make the previous pointer of the node that follows the front sentinel
point to the new node

Step 3: Set the next pointer of the front sentinel to the new node.

Does the above always work?

In the non-sentinel version, we know that the function fails for empty linked
lists. Does the above function work if you had an linked list that has sentinel
nodes?

We begin with an empty linked list with sentinel nodes

Step 1: looks good so far

Step 2: No problem here

Step 3: and done... a valid linked list

As you can see from above, the same set of steps applied to the general case
as well as empty list would end up with a proper linked list. Thus we only need
one version of push_front function (3 steps, no special case checks)

pop_front()
How will we change pop_front() now that we have sentinels?

def push_front(self, data):

nn = self.Node(data, self.front.next, self.front)

self.front.next.prev = nn

self.front.next = nn

Step 1: Check to make sure list isn't empty. If it is do nothing. Otherwise
continue to next steps. Remember that with sentinels, an empty list still has
two nodes (the front and back sentinels). Our empty check is therefore going
to look at whether those are the only nodes that exist. We can do this by
checking if front sentinel's next_ pointer points to the back sentinel

Step 2: Make a local pointer point to the Node we want to remove. This will be
the node that follows the front sentinel as it is the first node with real data.
(hold this node so we don't lose it by accident)

Step 3: Make the front sentinel's next pointer point to second data node (the
one that follows the one we want to remove

Step 4: Make the previous pointer of the node that now follows the front
sentinel point back to the front sentinel

The code snippet to do this is:

if self.front.next is not self.back:

rm = self.front.next

rm.next.prev = rm.prev

rm.prev.next = rm.next

del rm

Does the above always work?

When we looked at the linked list that did not use sentinels we saw that the
general solution did not work when the node being removed was the only node
left. Question is, will it work now if the node we want to remove is the only one
left.

If we perform the four steps inside the if statement from the above snippet,
this is what we will see:

Step 2:

Above looks fine.

Step 3:

This also looks correct

Step 4:

This was a problem in the non-sentinel version but we can see that there isn't a
problem here. No nullptr access.

Thus, our function works for both the general and special case.

Putting all this together our pop_front() function should look something like
this:

def pop_front(self):

if self.front.next is not self.back:

rm = self.front.next

rm.next.prev = rm.prev

rm.prev.next = rm.next

del rm

template <typename T>

class DList{

struct Node{

T data;

Node* next;

Node* prev;

Node(const T& dat=T{}, Node* nx=nullptr, Node*

pr=nullptr){

data=dat;

next=nx;

prev=pr;

}

};

Node* front;

Node* back;

public:

DList(){

front = new Node();

back = new Node();

front->next=back;

back->prev=front;

}

};

push_front()

How will push_front change with sentinels?

Step 1: Create new node, next node is the node that follows the front sentinel.
The previous node is the front sentinel.

Step 2: Make the previous pointer of the node that follows the front sentinel
point to the new node

Step 3: Set the next pointer of the front sentinel to the new node.

Does the above always work?

In the non-sentinel version, we know that the function fails for empty linked
lists. Does the above function work if you had an linked list that has sentinel
nodes?

We begin with an empty linked list with sentinel nodes

Step 1: looks good so far

Step 2: No problem here

Step 3: and done... a valid linked list

As you can see from above, the same set of steps applied to the general case
as well as empty list would end up with a proper linked list. Thus we only need
one version of push_front function (3 steps, no special case checks)

void push_front(const T& data){

Node* nn=new Node(data,front->next,front);

front->next->prev = nn;

front->next = nn;

}

pop_front()
How will we change pop_front() now that we have sentinels?

Step 1: Check to make sure list isn't empty. If it is do nothing. Otherwise
continue to next steps. Remember that with sentinels, an empty list still has
two nodes (the front and back sentinels). Our empty check is therefore going
to look at whether those are the only nodes that exist. We can do this by
checking if front sentinel's next_ pointer points to the back sentinel

Step 2: Make a local pointer point to the Node we want to remove. This will be
the node that follows the front sentinel as it is the first node with real data.
(hold this node so we don't lose it by accident)

Step 3: Make the front sentinel's next pointer point to second data node (the
one that follows the one we want to remove

Step 4: Make the previous pointer of the node that now follows the front
sentinel point back to the front sentinel

Step 5: deallocate the node we are removing

The code snippet to do this is:

Does the above always work?

When we looked at the linked list that did not use sentinels we saw that the
general solution did not work when the node being removed was the only node
left. Question is, will it work now if the node we want to remove is the only one
left.

If we perform the four steps inside the if statement from the above snippet,
this is what we will see:

Step 2:

if(front->next != back_){ //check for empty list

Node* rm = front->next;

front->next=rm->next;

front->next->prev=front;

delete rm;

}

Above looks fine.

Step 3:

This also looks correct

Step 4:

This was a problem in the non-sentinel version but we can see that there isn't a
problem here. No nullptr access.

Step 5:

The final line is to delete the node. Notice now, that our list is essentially an
empty linked list (with just the two sentinels). Thus, our function works for both
the general and special case.

Putting all this together our pop_front() function should look something like
this:

void pop_front(){

if(front->next != back){ //check for empty list

Node* rm = front->next;

front->next = rm->next;

front->next->prev = front;

delete rm;

}

}

Stacks and Queues
A stack is a kind of list where items are always added to the front and
removed from the front. Thus, a stack is a First In, Last Out (FILO) structure.
A stack can be thought of a structure that resembles a stack of trays. Each
time a new piece of data is added to the stack, it is placed on the top. Each
time a piece of data is removed it also must be removed from the top. Typically
only the top item is visible. You cannot remove something from the middle.

Queues like stacks are a special kind of list. In the case of a queue, items are
added to the back and removed from the front. In other words a queue is a
First In First Out (FIFO) structure. A queue is essentially a line up.

CAUTION

The idea of front, back, and top in stacks and queues have absolutely
nothing to do with their positions within the data structures used to
implement them. It is up to the implementer to make that decision on
where to put the frontmost, topmost and backmost items and maintain
order.

Operations
Typically stacks and queues have the ability to do the following:

• add an item
• remove an item
• access the "next" item to be removed

There are various names that we attribute to these operations for these:

Operation Stack Queue

add an item push enqueue

remove an item pop dequeue

access the "next" item to be removed top front

The most important thing to remember about stacks and queues is that its all
about the ordering. This absolutely must be tracked and maintained. When you
add an item it must be positioned as the newest item. When you remove an
item the one you remove is always the newest item for stacks or the oldest
item for queues. You can't put something into the middle of a stack or queue.
When you remove there is only one item that you can remove. Access is
typically only granted to the item that is at the top/front of the stack/queue.

INFO

Stacks and Queues are NOT for general storage. They are used to track
ordering. Any other features other than the 3 above must be secondary.

Applications
Applications of stacks and queues typically involve tracking the ordering of a
set of values. The question is whether the application is interested in the data
in the same order as it was received or reverse. Note that this is not as straight
forward as it may seem. We are not talking about encountering all the data in
one go. It will typically involve continuous adding and removing of data to the
Stack or Queue.

Some examples:

• bracket checking (stack)
• breadthfirst tree traversals (queue)
• infix to postfix expression (stack)
• postfix expression calculation (stack)

Stack Implementation
There are two general ways to implement a stack. As a stack is essentially a
list with a restriction on the operations of a list, we can use either an array or a
linked list to implement a stack. The key to understanding how to do this
efficiently is to understand the nature of a stack.

A stack is a FILO (first in last out) structure. Thus, the most important thing to
remember about it is that when you remove an item from the stack, you want
to remove the newest item, where ever that may be. How it is stored internally
(which end of the list do you insert into for example) does not matter as long
as you always remove the newest item. Thus, the question of how to
implement a stack comes down to choosing an algorithm such that the
operations can be completed as quickly as possible.

Recall that the operations are as follows:

• push - add a new item to the stack
• pop - removes top item from the stack
• initialize - create an empty stack
• isEmpty - tests for whether or not stack is empty
• isFull - tests to see if stack is full and cannot grow (not always needed)
• top - looks at value of the top item but do not remove it

Array Implementation
With a list that implemented as an array we typically start by creating an array
that is bigger than what we need. To add a value to the end of an array is a
constant time operation as long as we track where the end is. If we were to do
that, the most recently added item will be at the back of the array. Removing
that item simply involves decreasing the end of array tracker by one.

Check out this animation for details:

http://cathyatseneca.github.io/DSAnim/web/arraystack.html

Linked List Implementation
To implement a stack using a linked list, we have to consider the type of linked
list we would use and which end of the list we would want to insert to.

The simplest linked list is a singly list. If this linked list was implemented with
just a pointer to the first node, insertion would be O(1) at front of list, O(n) at
back of list. removal is O(1) at front of list and O(n) at back of list. If we added
an end pointer to the list, then insertion to back of list can be O(1) also,
however removing from the back of the list will still be O(n).

If we were to insert always at front of list, then the most recently added item
would be at the front of the list. Thus, removal must occur from the front as we
always remove the most recently added item. Since we can do both quickly
with a simple singularly linked list, that is all we will need to do.

Check out this animation for details:

http://cathyatseneca.github.io/DSAnim/web/llstack.html

http://cathyatseneca.github.io/DSAnim/web/arraystack.html
http://cathyatseneca.github.io/DSAnim/web/llstack.html

Queue Implementation
This section will look at how to efficiently implement a queue using both an
array and a linked list. Like a stack, a queue is also a special type of list. While
a queue is a "line up" the ideas of front and back are not meant to be taken
literally. The key is to understand that a Queue is a FIFO (first in first out)
structure. That is the item to be removed is the oldest item in the list. as long
as this is true, it doesn't matter where exactly the items get put into the queue
or where it is removed.

Linked List implementation
To implement a queue using a linked list, we have to consider the type of
linked list we would use and which end of the list we would want to insert to.

The simplest linked list is a singly list. If this linked list was implemented with
just a pointer to the first node, insertion would be O(1) at front of list, O(n) at
back of list. removal is O(1) at front of list and O(n) at back of list. If we added
an end pointer to the list, then insertion to back of list can be O(1) also,
however removing from the back of the list will still be O(n).

Now, if we perform enqueue by inserting at the front of the list, the oldest item
would be at the back of the list and thus, dequeue would have to be done
there. enqueue would be quick O(1) but dequeue would be slow O(n).
However, if we enqueue by inserting to the end of the list using a linked list
that tracks the last node, then the oldest item would be at the front of the
linked list. This will allow us to perform enqueue and dequeue in O(1) time.

Checkout this animation for details:

http://cathyatseneca.github.io/DSAnim/web/llqueue.html

http://cathyatseneca.github.io/DSAnim/web/llqueue.html

Array Implementation
Implementing a queue with an array is a bit more complicated than
implementing a stack using an array.

Consider the typical way we implement a list using an array. To insert a value
to the front of the list, we would move all existing values to an element that is
one index higher in the array then add the new value to the first element. To
remove a value we would move all values in the array to element one index
lower, overwriting the first element. Both the removal and insertion are O(n)
operations.

Thus, if we were to use this list, and performed enqueues at the front of the
list, the enqueue function would be O(n). Enqueuing in this manner would
mean that the oldest item would be at the back of the array. Removing from
back of list is fast so we can accomplish this in O(1) time as long as we track
where the last item is.

Now... if we were to enqueue to the end of the list, the oldest item would be at
the front, and thus removal would have to be done to the front of the list. In
this case, enqueue would be fast O(1) but dequeue would be slow O(n).

So clearly we need to come up with a better way to handle this.

One way that we can handle this is to track two indices instead of one. The first
is the index of the element at the front of the list. The second is the index of
the element at the back of the list. When you insert, insert to the index of the
back element and increment the index for back. When you remove, remove by
incrementing the index of the front. The second part of the implementation is
that we need to treat the array as if it is a ring. That is, the next element of the
last element is the first element and the previous element of the first element
is the last element. If we do not, we will quickly create a list with lots of unused

space at the front of the list and run out of space.

Check out this animation for details:

http://cathyatseneca.github.io/DSAnim/web/arrayqueue.html

http://cathyatseneca.github.io/DSAnim/web/arrayqueue.html

Implementation -
Iterators
Iterators are objects that are used to traverse and access data within a
container class without exposing the internal structure of the container.

Consider the following typical usage for an iterator for a container (like list) in
the C++ Standard library:

The for loop in the above code sample prints out every value within ll. There is
no need for the user to actually know what ll is. We could have changed list to
vector (or some other container class) and the for loop for printing every value
would not look different. We don't need to know that list is basically a linked list
or that vector is essentially an array... the iterators define a way for us to
access every piece of data within the container class.

In this section we will look at how to implement an iterator for our linked lists.

const_iterator vs iterator
Firstly, we need to be aware that we have two different iterators that we will
need to implement. a const_iterator and an iterator. We need to understand

std::list<int> ll;

...

std::list<int>::const_iterator it;

for(it = ll.begin();it !=ll.end();it++){

std::cout << *it << std::endl;

}

what the difference is. A const_iterator does not allow the modification of the
data within the container while an iterator does. When you pass containers to
functions, you typically either pass its address or you pass by reference. To
make it safe, you may make the pointer or reference const. You would not be
able to use a iterator to go through this sort of container but you can use a
const_iterator. Furthermore you must support the assignment of iterators into
const_iterators but not the other way around.

Iterator Functionality
The iterators we will write will support the following functionality:

• operator ++(makes iterator point to next piece of data. two versions, post
and pre-fix)

• operator -- (makes iterator point at previous piece of data. two versions,
post and pre-fix)

• operator * (dereference operator)
• operator == (compares two iterators, returns true if they refer to the same

piece of data)
• operator != (compares two iterators, returns true if they do not refer to the

same piece of data

We also need to add functions to the linked list class so that it will return
iterators to the first piece of data within the list as well as one past the last
item the list (begin() and end())

To allow assignment of iterators to const_iterators (but not the other way
around) we will create a heirarchy where const_iterator is the base class and
iterator is the derived class. Furthermore, we will also declare these iterators
into the linked list class itself (publically).

Default Constructors
Both the iterator and const_iterator class has a default public constructor that
sets the iterator to safe state.

template <typename T>

class DList{

...

public:

class const_iterator{

public:

const_iterator(){...}

const_iterator operator++(){...} //prefix

const_iterator operator++(int){...} //postfix

const_iterator operator--(){...} //prefix

const_iterator operator--(int){...} //postfix

const T& operator*() const{...}

bool operator==(const_iterator rhs) const{...}

bool operator!=(const_iterator rhs) const{...}

};

class iterator:public const_iterator{

public:

iterator(){...}

iterator operator++(){...} //prefix

iterator operator++(int){...} //postfix

iterator operator--(){...} //prefix

iterator operator--(int){...} //postfix

T& operator*(){...}

const T& operator() const{...}

};

const_iterator cbegin() const{...}

const_iterator cend() const{...}

iterator begin(){...}

Friends
Even though the iterator classes are part of DList, DList will not have access to
their private members. To allow access, we must declare that DList is a friend
of each of the iterators.

begin()/cbegin() and end()/cend()
begin()/cbegin() returns an iterator/const_iterator that refers to the first
piece of data in the container. In this case this is the node pointed to by front_.
end()/cend() returns an iterator/const_iterator to the item that follows the last
piece of data in the container. In this case, it would be a nullptr.

{% hint style="warning" %} end() does not return iterator to last item. It
returns an iterator to whatever is AFTER the last item {% endhint %}

Dereference (*)
The dereference operator is how we access the data within each node. There
are two versions. One returns a reference to the data the other a const
reference to the data. Only the iterator (not const_iterator) can return the non-
const reference to the data.

Increment and Decrement (++ and
--)
Both the ++ and -- operators have a prefix and postfix version. The ++

operator makes the operand point to the "next" item (one closer to the end) in
the list. The -- operator makes the operand point to the "previous" item (one
closer to the beginning of the list. Both the prefix and postfix versions of the
operators do the same thing to the operand. The difference is in what is
returned. In the prefix version of the operator, the operator returns an iterator
that refers to the same object as the operand. In the postfix versions of the
operator, the operator returns an iterator to the object the operand pointed at
before it was altered.

{% hint style="info" %} prefix and postfix refers to the position of the operator
with respect to the operand

pre_fix - operator comes before (pre) the operand (++x or --x)
post_fix-operator comes after (post) the operand (x++ or x--) {% endhint %}

What data must we have?
It is probably pretty obvious that we will need to store a Node* in the iterator
object. It can be used to refer to a node and access the data within the node.
However, that will not be quite enough. Consider the following:

According to specs, if you did the following ++x followed by --x, x should end
up back where it started. Suppose initially x was referring to the last node in
the list. ++x would make x refer to end(). if you then did --x you should be able
to get back to the last node. To support this in your implementation you must
store enough information to get back to the last node after you hit end(). Now,
if all you store is a Node*, then end() would simply set that pointer to nullptr.
There is no way for you to get back to any node within the list as there isn't
any reference to the list or any nodes within it.

Thus, in order to allow the above to occur we will not only need a Node* but we
will also need to store a pointer the DList object itself. This way, we can use the

DList pointer to find its last node.

Private Constructors
It would be advantageous to create private constructors to iterator. These
would only be accessible from members of DList and simplify construction.

Putting all this together
template <typename T>

class DList{

...

public:

class const_iterator{

friend class DList;

const DList* myList_;

Node* curr_;

const_iterator(Node* curr, const DList* theList){

curr_ = curr;

myList_=theList;

}

public:

const_iterator(){

myList_=nullptr;

curr_=nullptr;

}

//prefix

const_iterator operator++(){

curr_=curr_->next_;

return *this;

}

//postfix

const_iterator operator++(int){

const_iterator old=*this;

Tables
A Table is an unordered collection of records. Each record consists of a key-
value pair. Within the same table, keys are unique. That is only one record in
the table may have a certain key. Values do not have to be unique.

Table operations
A table supports a subset of the following operators (though sometimes it may
be combined in design)

• initialize - Table is initialized to an empty table
• isEmpty - tests if table is empty
• isFull - tests if table is full
• insert - add a new item with key:value to the table
• delete - given a key remove the record with a matching key
• update - given a key:value pair change the record in table with matching

key to the value
• find - given a key find the record
• enumerate - process/list/count all items in the table

A Simple
Implementation
Like lists, a table is an abstract data type. That is, it describes what it is but
not how to implement one. The underlying data structure needed to create a
table can vary widely from arrays sorted by keys to hash tables and even
trees.

A simple implementation is to simply use an array sorted by keys.

Insertion/Update
To add to this table, we must first find the spot where the item will go. This can
be done by modifying a binary search algorithm. Once the location is found, if
a record with the same key is not already in the table, we will need to shift
every item over to make room for the new record. If a record with a matching
key already exists, the old record can be replaced with the new.

The run time for performing the search is O(log n). If the record already exists,
and we are just updating it, the run time would be O(log n). However, inserting
a brand new record with a different key will require shifting on average 50% of
the list, and thus we are looking at a run time of O(n) for that operation.

Remove
To remove a record, we can start with a binary search algorithm to find the
record according to the key. If such a record exists, removal will involve shifting
the records down.

The run time for search is O(log n). However to remove, we must shift all the

records down. This process is O(n). Thus the remove operation is O(n)

Search
As the array is sorted by key, all searching can be done using a binary search.
This has a run time of O(log n)

Drawbacks
This implementation clearly has a lot of drawbacks. While the search() function
has an acceptable run time of logn, the other functions are generally slow. The
only part that is fast is search. Ideally it would be faster than this.

Hash Tables
A hash table uses the key of each record to determine the location in an array
structure. To do this, the key is passed into a hash function which will then
return a numeric value based on the key.

Hash Functions
A hash function must be designed so that given a certain key it will always
return the same numeric value. Furthermore, the hash function will ideally
distribute all possible keys in the keyspace uniformly over all possible
locations.

For example suppose that we wanted to create a table for storing customer
information at store. For the key, a customer's telephone number is used. The
table can hold up to 10,000 records and thus valid indexes for an array of that
size would be [0 - 9999]

Telephone numbers are 10 digits (###) ###-####

The first 3 of which is an area code.

Now, if your hash function was: use the first 4 digits of the phone number (area
code + first digit of number) that hash function would not be very good
because most people in the same area would have the same area code. Most
people in the Toronto for example have area code of 416 or 647... so there
would be very little variation in the records. However the last 4 digits of a
phone number is much more likely to be different between users (though
certainly not unique).

Generally speaking a good hash function should be:

• uniform (all indices are equally likely for the given set of possible keys)
• random (not predictable)

Load Factor
The load factor denoted by the symbol λ (pronounced lambda) measures the
fullness of the hash table. It is calculated by the formula:

Collisions
The pigeon hole principle
Suppose you had n mailboxes and m letters where m > n (more letters than
mailboxes). If you were to place all the letters into the available mailboxes,
there would be at least one mailbox with at least 2 letters in it. This is the
pigeon hole principle.

This is effectively what the situation is with our hash function and keys. The
number of mailboxes we have is n (capacity of array). The total number of
possible keys is m. Typically, the total number of possible keys is bigger than
the capacity of the array. (usually significantly bigger). Based on the pigeon
hole principle, it means that we will have situations where at two keys will get
hashed into the same hash index.

When two keys have the same hash index you have a collision. Generally
speaking, collisions are unavoidable. The key is to have a method of resolving
them when they do happen. The rest of this chapter look at different ways to
deal with collisions.

λ =
number of locations

number of records in table

Chaining
At every location (hash index) in your hash table store a linked list of items.
You only use as many nodes as necessary. Using Chaining the Table will not
overflow as you can have as long a chain as you need. However, You will still
need to conduct a short linear search of the linked list but if your hash function
uniformly distributes the items, the list should not be very long.

For chaining, the runtimes depends on the load factor (λ) The average length
of each chain is λ . λ is the number of expected probes needed for either an
insertion or an unsuccessful search. For a successful search it is 1 + 2

λ probes.

While it is possible for λ > 1, it is generally not a great idea to be too much
over. Your goal isn't to search long chains as that is very slow. The ability to
have long chains is more of a safety feature... you should try to still have as
short a chain as possible.

Chaining is a simple way of handling collisions. Instead of storing the key-value
pair (k, v) into the array (with capacity m) directly, chaining creates an array
of linked lists, initially all empty.For each operation involving keyk

• calculate i = hashIndex(k, m)

• perform operation (insert/delete/search) on the linked list at array[i]

Example
Suppose we were to have 6 keys (k1, k2, k3, k4, k5, k6). The hash function
returns as follows for these keys:

• hashIndex(k1, m) == 0

• hashIndex(k2, m) == m − 3

• hashIndex(k3, m) == m − 1

• hashIndex(k4, m) == m − 3

• hashIndex(k5, m) == 0

• hashIndex(k6, m) == m − 3

A table created using chaining would store records as follows (note that only
key's are shown in diagram for brevity)

Worst case run time
insert(k,v) - cost to find the correct linked list + cost to search for k within the
linked list, + cost to add new node or modify existing if k is found

search(k) - cost to find the correct linked list + cost to search for k within the

linked list

delete(k) - cost to find the correct linked list + cost to search for k within the
linked list + cost to remove a node from list

In each of the above cases, cost of to find the correct linked list is θ(1)
assuming that the cost of calculating hash is constant relative to number keys.
We simply need to calculate the hash index, then go to that location

The cost to add a node, modify a node or delete a node (once node has been
found) is θ(1) as that is the cost to remove/insert into linked list given pointers
to appropriate nodes

The cost to search through linked list depends on number of nodes in the
linked list. At worst, every single key hashes into exactly the same index. If
that is the case, the run time would be θ(n)

Thus, the worst case run time is θ(n). In reality of course, the performance is
signficantly better than this and you typically don't encounter this worst case
behaviour. Notice that the part that is slow is the search along the linked list. If
our linked list is relatively short then the cost to search it would also not take
very long.

Average case run time
We begin by making an assumption called Simple Uniform Hash Assumption
(SUHA). This is the assumption that any key is equally likely to hash to any slot.
The question then becomes how long are our linked lists? This largely depends
on the load factor λ = n/m where n is the number of items stored in the linked
list and m is the number of slots. The average run time is θ(1 + λ)

Linear Probing
Chaining essentially makes use of a second dimension to handle collisions.
Chaining is an example of a closed addressing. With closed addressing
collision resolution methods use the hash function to specify the exact index of
where the item is found. We may have multiple items at the index but you are
looking at just that one index.

This is not the case for linear probing. Linear Probing only allows one item at
each element. There is no second dimension to look. Linear probing is an
example of open addressing. Open addressing collision resolution methods
allow an item to be placed at a different spot other than what the hash function
dictates. Aside from linear probing, other open addressing methods include
quadratic probing and double hashing.

With hash tables where collision resolution is handled via open addressing,
each record actually has a set of hash indexes where they can go. If the first
location at the first hash index is occupied, it goes to the second, if that is
occupied it goes to the third etc. The way this set of hash indexes is calculated
depends on the probing method used (and in implementation we may not
actually generate the full set but simply apply the probing algorithm to
determine where the "next" spot should be).

Linear probing is the simplest method of defining "next" index for open address
hash tables. Suppose hash(k) = i, then the next index is simply i+1, i+2, i+3,
etc. You should also treat the entire table as if its round (front of array follows
the back). Suppose that m represents the number of slots in the table, We can
thus describe our probing sequence as: {hash(k), (hash(k) +
1)%m, (hash(k) + 2)%m, (hash(k) + 3)%m, … }

Method 1:
Insertion
The insertion algorithm is as follows:

• use hash function to find index for a record
• If that spot is already in use, we use next available spot in a "higher" index.
• Treat the hash table as if it is round, if you hit the end of the hash table, go

back to the front

Each contiguous group of records (groups of record in adjacent indices without
any empty spots) in the table is called a cluster.

Searching
The search algorithm is as follows:

• use hash function to find index of where an item should be.
• If it isn't there search records that records after that hash location

(remember to treat table as cicular) until either it found, or until an empty
record is found. If there is an empty spot in the table before record is
found, it means that the the record is not there.

• NOTE: it is important not to search the whole array till you get back to the
starting index. As soon as you see an empty spot, your search needs to
stop. If you don't, your search will be incredibly slow

Removal
The removal algorithm is a bit trickier because after an object is removed,
records in same cluster with a higher index than the removed object has to be
adjusted. Otherwise the empty spot left by the removal will cause valid
searches to fail.

The algorithm is as follows:

• find record and remove it making the spot empty
• For all records that follow it in the cluster, do the following:

◦ determine the hash index of the record
◦ determine if empty spot is between current location of record and the

hash index.
◦ move record to empty spot if it is, the record's location is now the

empty spot.

Example:
Suppose we the following 7 keys and their associated hash indices. Let us then
insert these 5 keys from k1 to k5 in that order.

Key Hash Index

k1 8

k2 7

k3 9

Key Hash Index

k4 1

k5 8

k6 9

k7 8

Insert keys k1 to k4

All four keys have the different hash indexes and thus, no collisions occur, they
are simply placed in their hash position.

Insert k5. probe sequence of k5 is {(8 + 0)%10, (8 + 1)%10, (8 +
2)%10, (8 + 3)%10, (8 + 4)%10, (8 + 5)%10, … } = {8, 9, 0, 1, 2, 3 … }. Thus,
we place k5 into index 0 because 8, 9 and 0 are all occupied

Suppose we then decided to do a search for k6. k6 does not exist, so the
question is when can we stop. k6's probe sequence is: {(9 + 0)%10, (9 +
1)%10, (9 + 2)%10, (9 + 3)%10, (9 + 4)%10, (9 + 5)%10, … } =
{9, 0, 1, 2, 3, 4 … }. We begin looking at the first probe index 9. We proceed
until we get to index 2. Since index 2 is empty, we can stop searching

Search for k5. If we were to search for something that is there, this is what
would happen. Probe sequence for k5 is {8, 9, 0, 1, 2, 3 … }. Thus, we would
start search at 8, we would look at indices 8,9,0, and 1. At index 1 we find k5
so we stop

Now, lets remove a node.

A cluster is a group of records without any empty spots. Thus, any search
begins with a hashindex within a cluster searches to the end of the cluster.

Currently there is one big cluster from index to 7 to index 1 inclusive.

Suppose we removed k3. If we did this, our one big cluster would be split into
two smaller clusters. This is actually a good thing as search stops on first
empty spot. So the only question really is whether each record in the group

that follows the removed records are in the correct cluster (the groups before
the removed record is always in the correct spot.

So we go through the remaining records in the cluster and use the hashindex
of each key to determine if its in the correct cluster. If it is in the wrong cluster
we move. it

Continuing with example, we look at k5. k5 should actually go in 8, so the
record is in the wrong side of the empty spot, so what we do is move the
record into the empty spot, make k5's spot the empty spot and continue.

We test k4 and its in the correct side of the empty spot so we leave it alone

We finish processing the records within the cluster so we are done.

Method 2: Tombstoning
Tombstoning is a method that is fairly easy to implement. It requires each
element to not only store the record, but also a status of element. There are
three statuses:

• Empty - nothing has ever been inserted into this spot
• Used/Occuppied - a record is stored here
• Deleted - something was here but it has been deleted. Note this is NOT

exactly the same as empty. You will see why in a moment.

Insertion
• If it is not there, start looking for the first "open" spot. An open spot is the

first probe index that is either deleted or empty.

Searching
The search algorithm is as follows:

• use hash function to find index of where an item should be.
• Check to see if the item's key matches that of key we are looking for
• If it isn't there search for key-value pairs in the "next" slot according to the

probing method until either it found, or until an we hit an empty slot.
• NOTE: it is important not to search the whole array till you get back to the

starting index. As soon as you see an empty slot, your search needs to
stop. If you don't, your search will be incredibly slow for any item that
doesn't exist.

DANGER

Note that only empty slots stop searching not deleted slots

Removal
The removal algorithm is as follows:

• search for the record with matching key.
• If you find it, mark the spot as deleted

Suppose we the following 6 keys and their associated hash indices (these are
picked so that collisions will definitely occur). Let us then insert these 5 keys
from k1 to k5 in that order.

Key Hash index

k1 8

k2 7

k3 9

k4 7

k5 8

k6 9

Insert k1 to k3 (no collisions, so they go to their hash indices)

Insert k4. probe sequence of k4 is {(7 + 0)%10, (7 + 1)%10, (7 + 2)%10, (7 +
3)%10, (7 + 4)%10, (7 + 5)%10, … } = {7, 8, 9, 0, 1, 2 … }. Thus, we place k4
into index 0 because 7, 8 and 9 are all occupied

Insert k5. probe sequence of k5 is {(8 + 0)%10, (8 + 1)%10, (8 + 2)%10, (8 +
3)%10, (8 + 4)%10, (8 + 5)%10, … } = {8, 9, 0, 1, 2, 3 … }. Thus, we place k5
into index 1 because 8, 9 and 0 are all occupied

Suppose we then decided to do a search. First lets search for something that
isn't there, k6. k6's probe sequence is: {(9 + 0)%10, (9 + 1)%10, (9 +
2)%10, (9 + 3)%10, (9 + 4)%10, (9 + 5)%10, … } = {9, 0, 1, 2, 3, 4 … }. We
begin looking at the first probe index. We proceed until we get to index 2.
Since index 2 is empty, we can stop searching

If we were to search for something that is there (k5 for example), here is what

we would do. Probe sequence for k5 is {8, 9, 0, 1, 2, 3 … }. Thus, we would start
search at 8, we would look at indices 8,9,0, and 1. At index 1 we find k5 so we
stop

Suppose we delete k3. All we need to do is find it, and mark the spot as
deleted

When a spot is deleted, we still continue when we search... thus if we were to
look for k5, we do not stop on deleted, we must keep going.

Quadratic Probing
With linear probing everytime two records get placed beside each other in
adjacent slots, we create a higher probability that a third record will result in a
collision (think of it as a target that got bigger). One way to avoid this is to use
a different probing method so that records are placed further away instead of
immediately next to the first spot. In quadratic probing, instead of using the
next spot, we use a quadratic formula in the probing sequence. The general
form of this algorithm for probe sequence i is: hash(k) + c1i + c2i2. At it's
simplest we can use hash(k) + i2. Thus, we can use: {hash(k), (hash(k) +
1)%m, (hash(k) + 4)%m, (hash(k) + 9)%m, … }

Key Hash index

k1 8

k2 7

k3 9

k4 7

k5 8

k6 9

Quadratic Probing Example

Insert k1 to k3 (no collisions, so they go to their hash indices)

Insert k4. probe sequence of k4 is {(7 + 02)%10, (7 + 12)%10, (7 +
22)%10, (7 + 32)%10, (7 + 42)%10, (7 + 52)%10, … } = {7, 8, 1, 6, 3, 2 … }.
Thus, we place k4 into index 1 because 7 and 8 are both occupied

Insert k5. probe sequence of k5 is {(8 + 02)%10, (8 + 12)%10, (8 +
22)%10, (8 + 32)%10, (8 + 42)%10, (8 + 52)%10, … } = {8, 9, 2, 7, 4, 3 … }.
Thus, we place k5 into index 2 because 8 and 9 are both occupied

Likewise searching involves probing along its quadratic probing sequence.
Thus, searching for k6 involves the probe sequence {(9 + 02)%10, (9 +
12)%10, (9 + 22)%10, (9 + 32)%10, (9 + 42)%10, (9 + 52)%10, … } =

{9, 0, 3, 8, 5, 4 … }. We search index 9, then index 0. We can stop at this point
as index 0 is empty

Double Hashing
Double hashing addresses the same problem as quadratic probing. Instead of
using a quadratic sequence to determine the next empty spot, we have 2
different hash functions, hash1(k)and hash2(k). We use the first hash function
to determine its general position, then use the second to calculate an offset for
probes. Thus the probe sequence is calculated as: {hash1(k), (hash1(k) +
hash2(k))%m, (hash1(k) + 2hash2(k))%m, (hash1(k) +
3hash2(k))%m, … }

Key Hash1(key) Hash2(key)

k1 8 6

k2 7 2

k3 9 5

k4 7 4

Key Hash1(key) Hash2(key)

k5 8 3

k6 9 2

Double uses a second hash function to calculating a probing offset. Thus, the
first hash function locates the record (initial probe index)... should there be a
collision, the next probe sequence is a hash2(key) away.

Again we start off with hashing k1, k2 and k3 which do not have any collisions

Insert k4. probe sequence of k4 is {(7 + 0(4))%10, (7 + 1(4))%10, (7 +
2(4))%10, (7 + 3(4))%10, … } = {7, 1, 5, 9, … }. Thus, we place k4 into index
1 because 7 was occupied

Insert k5. probe sequence of k5 is {(8 + 0(3))%10, (8 + 1(3))%10, (8 +
2(3))%10, (8 + 3(3))%10, … } = {8, 1, 4, 7, … }. Thus, we place k5 into index
4 because 8 and 1 were occupied

Graphs
A graph are made up of a set of vertices and edges that form connections
between vertices. If the edges are directed, the graph is sometimes called a
digraph. Graphs can be used to model data where we are interested in
connections and relationships between data.

In this section of the notes we will define what a graph is and how the graph
can be represented programmatically.

* flight routes between cities

* social media follower counts

* and more...

Graph Definition
The formal definition of a graph is as follows:

A Graph G = (V , E) is made up made of a set of vertices V = v1, v2, v3... and
edges E = e1, e2, e3.... Each edge in E defines a connection between (u, v),
where u, v ∈ V

Basically this means that a graph is made up of vertices and edges. Each edge
connects two of the vertices together. A graph is represented visually as
follows:

Vertices
A vertex in a graph represents some type of object. The full graph is about

relationships between these objects. For example, suppose you wanted to
represent the flights between various airports for an airline. the airports would
each be represented by a vertex.

When we look at a graph, we typically label each vertex. For example:

This graph has vertices A, B, C, D, E, F and G. If we were to represent the
objects involved with a specific problem, we would store information about
each object into records and store them into a table.

::: info

Note that the vertex labels A,B,C etc. are just labels. These labels are used to
refer to the vertices in the diagram... in reality we don't necessarily store/name
labels in this manner. Often vertices are just identified by a number or has
some other identifying feature.

:::

Edges
Edges represent a connection between two vertices.

Aside from identifying a connection between vertices, edges can also have
weights. For example:

The weights on an edge can act in a way to serve as information about the
nature of the connection between two vertices. For example, each vertex can
represent a city and the weights, the distance between the cities.

Aside for weights, an edge may also include a direction. Graphs where edges
have directions are also called a digraph. The following graph has both weights
and direction:

Other Definitions
• adjacent - Given two nodes A and B. B is adjacent to A if there is a

connection from A to B. In a digraph if B is adjacent to A, it doesn't mean
that A is automatically adjacent to B.

• edge weight/edge cost - a value associated with a connection between two
nodes

• path - a ordered sequence of vertices where a connection must exist
between consecutive pairs in the sequence.

• simplepath - every vertex in path is distinct
• path length - the number of the edges in a path.
• cycle - a path where the starting and ending node is the same
• strongly connected - If there exists some path from every vertex to every

other vertex, the graph is strongly connected.
• weakly connected - if we take away the direction of the edges and there

exists a path from every node to every other node, the digraph is weakly
connected.

Representation
To store the info about a graph, there are two general approaches. We will use
the following digraph in for examples in each of the following sections.

Adjacency Matrix
An adjacency matrix is in essence a 2 dimensional array. Each index value
represents a node. When given 2 nodes, you can find out whether or not they
are connected by simply checking if the value in corresponding array element
is 0 or not. For graphs without weights, 1 represents a connection. 0 represents
a non-connection.

The graph adjancey matrix is a good represenation if the graph is dense. It is
not good if the graph is sparse as many of the values in the array will be 0.

An adjacency matrix representation can provide an O(1) run time response to
the question of whether two given vertices are connected (just look up in table)

A-0 B-1 C-2 D-3 E-4 F-5 G-6

A-0 0 2 0 0 0 0 0

B-1 0 0 0 0 4 0 0

C-2 3 0 0 0 0 0 0

D-3 0 0 1 0 0 0 0

E-4 0 0 0 2 0 4 0

F-5 0 0 0 0 3 0 1

G-6 0 5 0 0 0 0 0

Adjacency List
An adjacency list uses an array of linked lists to represent a graph. Each
element represents a vertex and for each (other) vertex it is connected to, a
node is added to its linked list. For graphs with weights each node also stores
the weight of the connection to the node. Adjacency lists are much better if the
graph is sparse. It takes longer to answer the question of two given vertices
are connected (Must go through list to check each node) but it can better
answer the question given a single vertex, which vertices are directly
reachable from that vertex.

Examples
A graph with no weights or directions

A graph with weights but no directions

A graph with weights and directions

Dijkstra's Algorithm
Dijkstra's Algorithm is an algorithm for finding the shortest path from one
vertex to every other vertex. This algorithm is an example of a greedy
algorithm. Greedy algorithms are algorithms that find a solution by picking
the best solution encountered thus far and expand on the solution. Dijkstra's
Algorithm was first conceived by Edsger W. Dijkstra.

The general algorithm can be described as follows:

1. Start at the chosen vertex (we'll call it v1).
2. Store the cost to travel to each vertex that can be reached directly from

v1.
3. Next look at the vertex that is least costly to reach from v1 (we'll call this

vertex v2 for this example).
4. For each vertex that is reachable from v2, find the total cost to that vertex

starting from v1 (we want the total cost, not just the lowest cost from v2).
Update the cost of travel to these vertices if it is lower than the current
known cost.

5. Pick the next lowest cost and continue.

Example
Consider the following graph (non-directed)

Initial state
We will use Dijkstra's algorithm to find the shortest distance from A to every
other vertex. To track how we are doing, we will create a table that will track
the shortest distances from A we have encountered so far as well as the
"previous" node in the path (so if we follow all previous nodes, we end up back
at A). We also track whether we "know" about the shortest path from A to each

node... that is, have we already been able to find the shortest path to that
node from A. Currently (at the beginning,) we do not know which nodes are
reachable from A so we store infinity into every spot other than A. The cost of
getting to A from A is 0. Initially the table looks like this:

Vertex Shortest Distance from A Previous Vertex Known

A 0 false

B ∞ false

C ∞ false

D ∞ false

E ∞ false

Expand A
Now, starting from A, there are two vertices that reachable, B and E

We store the total distance from A into the table for both these vertices if it is
less than the shortest distance so far. At this point, A is now known as we have
considered all its neighbours

Vertex Shortest Distance from A Previous Vertex Known

A 0 true

Vertex Shortest Distance from A Previous Vertex Known

B 7 A false

C ∞ false

D ∞ false

E 3 A false

Expand E
Now, we continue from here by considering the unknown vertex that has the
shortest distance to A. In this case it is 3 (smallest in distance table with a
false value in known). In implementation, we actually would use a priority
queue (heap) to store the vertex with its distance and simply dequeue the
smallest distance and check that the vertex was still unknown.

In any case, we are going to now consider E. From E the unknown neighbours
are B and D. The distance to D (from A) is 5 (3 + 2). The distance to B is 4 (3 +
1). Now, The value stored previously for D was ∞ so we replace that with 5.
The distance to B was 7, so we replace that also. We also mark that E is now
known

Vertex Shortest Distance from A Previous Vertex Known

A 0 true

B 4 E false

Vertex Shortest Distance from A Previous Vertex Known

C ∞ false

D 5 E false

E 3 A true

Expand B
The next vertex we consider is the one with the shortest distance to A that is
still not known. This is now B.

From B, we can reach unknown neighbours C and D. The distance to C (from A)
is 10 (4+6). The distance to D (from A) is 6 (4 + 2). The value stored in the
table for C was ∞ so we replace that. The value stored in D was 5, so that
entry is not replaced because this new distance is NOT smaller.

Vertex Shortest Distance from A Previous Vertex Known

A 0 true

B 4 E true

C 10 B false

D 5 E false

E 3 A true

Expand D
The next vertex that with the smallest distance to A that is unknown is D. From
D, there is only one unknown vertex (C). The distance to C is 9 (5 + 4). As this
is smaller than what is stored, we will update the table

Vertex Shortest Distance from A Previous Vertex Known

A 0 true

B 4 E true

C 9 D false

D 5 E true

E 3 A true

Expand C
The only vertex left is C. From C, there are no unknown neighbours so we mark
C as known and we are done.

Vertex Shortest Distance from A Previous Vertex Known

A 0 true

B 4 E true

Vertex Shortest Distance from A Previous Vertex Known

C 9 D true

D 5 E true

E 3 A true

Shortest path
To find the shortest distance to A, we simply need to look it up in the final
table.

However, if we want to find the shortest path it isn't so simple as a look up. We
actually need to work away backwards by looking up the previous vertices. For
example, to find shortest path from A to C, we see that C's previous was D. D's
previous was E. E's previous was A. Thus, the path is:

A --> E --> D --> C

Minimum Spanning
Trees
A spanning tree is a connected, acyclic subgraph of a graph G = (V , E). That
is it is the subset of edges that are connected and acyclic. If G itself is not
connected, then we can generalize this to a spanning forest.

A minimum spanning tree (MST) of a graph G = (V , E) with weight function
w(e) for each e ∈ E, is a spanning tree that has the smallest total weight.

How to find a minimum spanning
tree
To find an MST, we can either start with every edge in the graph and remove
edges till we get an MST or we can select edges till we form an MST.

For the removal method, we can start out with every edge in the graph and
start eliminating the edges with the highest weights. An edge can be removed
as long as we don't disconnect some vertex (ie if that is the only edge to a
vertex, we can't remove it). We keep removing edges until we have an MST.
However, this is not practical. If there are n nodes in a graph, a spanning tree
has n-1 edges. potentially there are 2

(n)(n−1) edges in total. This means that any
algorithm that finds an MST in this manner would end up with worst case
Ω(n2)

Instead of removing edges, we can find the MST by building the MST instead.
The general generic algorithm for doing this is as follows:

Now... this is a very generic algorithm and there are parts not yet defined. Lets
start with looking for an e being safe for T. An edge e is safe for T iff adding e
to T makes T subset of some MST of G. Of course... problem is how do we know
if e is part of some MST of G when that is exactly what this function is suppose
to find?

INFO

Theorem: If G is a connected, undirected weighted graph and T is a subset
of some MST of G and e is any edge of minimum weight that are in
different connected components of T, then adding e is safe for T (See text
for proof)

Kruskal's Algorithm
Kruskal's algorithm starts by sorting edges according to weights. It then picks
the smallest edge out and adds it to T only if the end points are in different
connected components. If we use something like a BFS or DFS to find
connected components, it will be very slow. Instead, what we can do is use a
disjoint set

greedyMST(G=(V,E)){

T=[]; //empty set of edges

while(T is not an MST){

find an edge e from E that is safe for T

add e to T

}

}

KruskalsMST(G=(V,E)){

T=[]; //set of edges that form MST, initially empty

Example

So let us consider the following graph:

Given the graph above, the edges sorted in non-descending order by weight
are: (C,D), (F,G), (A,B),(D,E),(A,C), (B,E), (E,F),(B,G). We will exam the edges in
this order in the example below

Step
#

graph, T shown in yellow Disjoint Sets

Initial

T= {}

{A}, {B}, {C},
{D},{E},{F},{G}

Step
#

graph, T shown in yellow Disjoint Sets

1

T={(C,D)}

{A}, {B}, {CD},
{E},{F},{G}

Step
#

graph, T shown in yellow Disjoint Sets

2

T={(C,D), (F,G)}

{A}, {B}, {C,D},

Step
#

graph, T shown in yellow Disjoint Sets

3

T={(C,D), (F,G),(A,B)}

{A,B}, {C,D},

Step
#

graph, T shown in yellow Disjoint Sets

4

T={(C,D), (F,G),(A,B),(D,E)}

{A,B}, {C,D,E},

Step
#

graph, T shown in yellow Disjoint Sets

5

T={(C,D), (F,G),(A,B),(D,E),(A,C)}

{A,B,C,D,E},

Step
#

graph, T shown in yellow Disjoint Sets

6

T={(C,D), (F,G),(A,B),(D,E),(A,C)}

{A,B,C,D,E,F,G}

Prim's Algorithm
We pick a vertex v ∈ V to be the "root" of the MST. After that we simply grow
the tree by joining isolated vertices one at a time. An isolated vertex is any
vertex that isn't part of the MST yet picking the smallest edge weight. To
support this, we will use a MinHeap. We queue into this heap edges that will

We next consider (E,F) and as they are in different sets we

connect them.

(B,G) are in same disjoint set so we are now done |

connect an isolated vertex with the current MST. We use infinity if there is no
direct edge yet to any vertex in the MST

Step Graph

Heap
(vertex,
parent,
weight

parent),
listed

with by
priority
(smaller
weight)

Initial

NIL,0),(B,
NIL,-),(C,
NIL,-),(D,
NIL,-),(E,
NIL,-),(F,
NIL,-),(G,

NIL,-)

Initial

Step Graph

Heap
(vertex,
parent,
weight

parent),
listed

with by
priority
(smaller
weight)

state.
pick
A as
root

1

A,2),(C,
A,3),(D,
NIL,-),(E,
NIL,-),(F,
NIL,-),(G,

NIL,-)

Step Graph

Heap
(vertex,
parent,
weight

parent),
listed

with by
priority
(smaller
weight)

T={}

2

T={(A,B)}

(C, A,
3),(E, B,
4),(G, B,

5),(D,
NIL,-),(F,

NIL,-)

Step Graph

Heap
(vertex,
parent,
weight

parent),
listed

with by
priority
(smaller
weight)

3

T={(A,B), (A,C)}

(D, C,
1),(E, B,
4),(G, B,

5),(F,
NIL,-)

Step Graph

Heap
(vertex,
parent,
weight

parent),
listed

with by
priority
(smaller
weight)

4

T={(A,B),(A,C),(C,D)}

(E, D,
2),(G, B,

5),(F,
NIL,-)

Step Graph

Heap
(vertex,
parent,
weight

parent),
listed

with by
priority
(smaller
weight)

5

T={(A,B),(A,C),(C,D),(D,E)}

(F, E,
4),(G, B,

Step Graph

Heap
(vertex,
parent,
weight

parent),
listed

with by
priority
(smaller
weight)

6

T={(A,B),(A,C),(C,D),(D,E),(E,F)}

(G, F, 1)

Step Graph

Heap
(vertex,
parent,
weight

parent),
listed

with by
priority
(smaller
weight)

7

T={(A,B),(A,C),(C,D),(D,E),(E,F),(F,G)}

empty

Trees
A tree is a very important data structure. It has the ability to classify data and
separate it reducing the overhead of search. It is used in many areas of
computing. This section deals will introduce you to the idea of trees and some
basic algorithms surrounding them.

Definitions
This section will include some basic terminology used when describing trees. To
help you understand the terminology, use the following diagram:

Node: the thing that store the data within the tree . (each circle in the above
diagram is a node)

Root Node: the top most node from which all other nodes come from. A is the
root node of the tree.

Subtree: Some portion of the entire tree, includes a node (the root of the
subtree) and every node that goes downwards from there. A is the root of the
entire tree. B is the root of the subtree containing B,D,E and F

Empty trees: A tree with no nodes

Leaf Node: A node with only empty subtrees (no children) Ex. D,E,F,I,J,and G
are all leaf nodes

Children: the nodes that is directly 1 link down from a node is that node's
child node. Ex. B is the child of A. I is the child of H

Parent the node that is directly 1 link up from a node. Ex. A is parent of B. H is
the parent of I

Sibling: All nodes that have the same parent node are siblings Ex. E and F are
siblings of D but H is not

Ancestor: All nodes that can be reached by moving only in an upward
direction in the tree. Ex. C, A and H are all ancestors of I but G and B are not.

Descendants or Successors of a node are nodes that can be reached by only
going down in the tree. Ex. Descendants of C are G,H,I and J

Depth: Distance from root node of tree. Root node is at depth 0. B and C are at
depth 1. Nodes at depth 2 are D,E,F,G and H. Nodes at depth 3 are I and J

Height: Total number of nodes from root to furthest leaf. Our tree has a height
of 4.

Path: Set of branches taken to connect an ancestor of a node to the node.
Usually described by the set of nodes encountered along the path.

Binary tree: A binary tree is a tree where every node has 2 subtrees that are
also binary trees. The subtrees may be empty. Each node has a left child and a
right child. Our tree is NOT a binary tree because B has 3 children.

The following are NOT trees

Tree Implementation
By its nature, trees are typically implemented using a Node/link data structure
like that of a linked list. In a linked list, each node has data and it has a next
(and sometimes also a previous) pointer. In a tree each node has data and a
number of node pointers that point to the node's children.

However, a linked structure is not the only way to implement a tree. We will
see this when in the next pages use an array/a list to represent a binary heap.
In this case, the root will be stored at index 0 and for any node stored at index
i, we will calculate the left subtree's root, the right subtree's root, and the
parent node's indexes with formulas. However, if you do this for non-complete
trees, you would end up with many unused spaces in the array/list.

Heap and Heap Sort
Heap Sort is a sort based on the building and destroying of a binary heap. The
binary heap is an implementation of a Priority Queue. Normally, when you
have a queue, the first value in is the first value out. However with a priority
Queue the value that comes out of the queue next depends on the priority of
that value.

Basic operations on the binary Heap include:

• insert - add an item to the binary heap
• delete - removes the item with the highest priority in the binary heap.

The idea for the Heap sort is this: put every value in the array into the binary
heap using its value as the priority, then repeatedly call delete to remove the
smallest/largest value and put it back into the array.

Priority Queues using
Binary Heaps
A priority queue is an abstract data type. Like queues and stacks, it is an idea,
the underlying storage and access is decoupled from the functionality of a
priority queue. A priority queue is similar to a queue in that you use it for
ordering data. However, instead of ordering based on when something was
added, you order it based on the priority value of the item. An item at the front
of the priority queue (and the item that will be removed if an item is to be
dequeued) is the item with the highest priority. This is the type of queues you
might find in a hospital emergency room. The thing that matters more is the
severity of the illness as opposed to who got there first.

If you were to implement a priority queue using a regular list, you would
essentially have to maintain a sorted list (sorted by priority). This would mean
the following:

1. insertions would be O(n) for sure as you would need to go through an
already sorted list trying to find the right place then doing the insertion.

2. removal is from the "front" of the queue, so depending on how you do your
implementation, this can be potentially O(n) also.

This is not very efficient. If we were to create our priority queue in this manner
the run time for both operations would not be very good. If we then base a sort
on such a data structure, its run time would be no better than one of the
simple sorts. Thus, clearly this isn't how we should implement a priority queue.

The interesting thing about a priority queue is that we really don't care where
any value other than the one with the highest priority is. We care about where
the highest priority item is and we want to be able to find it and remove it

quickly but all other values can be essentially anywhere.

A binary heap is a data structure that can help us achieve this.

Binary Heap - Basic Definitions
Before we begin with the definitions below, and since they involve trees, it may
be a good idea to look at the tree definitions first so that the definitions with
respect to heaps make more sense.

See: Tree Definitions

Binary Heap - A binary heap is a complete binary tree where the heap
order property is always maintained.

Binary Tree - A binary tree is either a) empty (no nodes), or b) contains a root
node with two children which are both binary trees.

Complete Binary Tree - A binary tree where there are no missing nodes in all
except at the bottom level. At the bottom level the missing nodes must be to
the right of all other nodes

These binary trees are complete.

These binary trees are not complete. The first one is missing a node one level
higher than leaves, the second is missing further left in the tree than an
existing node

Heap Order Property: For each node, the parent of the node must have a
higher priority, while its children must have a lower priority. There is no
ordering of priority other than this rule. Thus, the highest priority item will be
at the root of the tree. Below is a heap where we define the smaller value as
having higher priority:

Insertion
Insertion into a heap must maintain both the complete binary tree structure
and the heap order property. To do this what we do is the following.

• create a new empty node in the left most open spot at the bottom level of
the tree

• If value can be placed into node without violating heap order property put
it in

• otherwise pull the value from parent into the empty node
• repeat the previous two steps until the value can be placed

This process effectively creates an empty node starting at the bottom of the
tree. The empty node moves up until it is in the correct position and the value
can be placed inside the empty node. This process of moving the empty node
towards the root is called percolate up

Example
Create a min heap (meanning that a node with a smaller value has more
priority over another node with a larger value) by inserting these number in
the order given: 10, 6, 20, 5, 16, 17, 13, 2

Insert 10 :

Insert 6:

Insert 20:

Insert 5

Insert 16

Insert 17

Insert 13

Insert 2

Removal
The highest priority value is always the value that is removed from the binary
heap. The way that the Heap is set up, the node with the highest priority is at
the root. Finding it is easy but the removal process must ensure that both the
complete binary tree structure along with the heap order property is
maintained. Therefore, just removing the root would be a bad idea.

In order for the complete binary tree property to be maintained we will be
removing the right most node at the bottom level. Note that a complete binary
tree with n nodes can only have 1 shape, so the shape is pretty much
determined by the fact that removing a value creates a tree with one fewer

node.

The empty spot that had been created by the removal of the value at root
must be filled and the value that had been in the rightmost node must go back
into the heap. We can accomplish this by doing the following:

• If the value could be placed into the empty node (remember, this starts at
root) without violating the Heap Order Property, put it in and we are done

• otherwise move the child with the higher priority up (the empty spot
moves down).

• Repeat until value is placed

The process of moving the empty spot down the heap is called percolate
down

Example: (Note, removal always removes
value from root)

Implementation
Clearly we want to implement the heap in as simple a manner as possible.
Although we can use a link structure to represent each node and their children,
this structure is actually not that good for a heap. One reason is that each node
needs two extra pointers so for small data the memory needed for the pointers

could easily exceed that of the data. Also, we really don't need the linking
structure because our tree is a complete binary tree. This makes it very easy
for us to use an array to represent our tree.

Idea is this. Store the data in successive array elements. Use the index values
to find the child and parent of any node.

Suppose data was stored in element i. The left child of that node is in element
2i+1 The right child of the node is in element 2i+2 The parent of the node is
stored in (i-1)/2 (for all but root node which has no parent)

This representation is very convenient because when we add values to the end
of the array it is like we are adding a node to the leftmost available spot at the
bottom level.

We do not have empty elements in the array/list simply because of the
definition of the heap (that it is a complete binary tree)

We also eliminate any need for pointers or the overhead of allocating nodes as
we go.

Heapify and Heap Sort
Recall that Heap Sort basically operates by building a heap with n values then
destroying the heap.

A complete binary tree with n nodes means that at most there are log n nodes
from the root (top) to a leaf (a node at the bottom of the tree)

Insertion may require the percolate up process. The number of times a node
needs to percolate up can be no more than the number of nodes from the root
to the leaf. Therefore, it is pretty easy to see that this percolate up process is
O(log n) for a tree with n nodes. This means that to add a value to a Heap is a
process that is O(log n). In order for us to build a heap we need to insert into it
n times. Therefore, the worst case runtime for this process is O(n log n)

The deletion process may require a percolate down process. Like the percolate
up process this also is O(log n). Thus, to remove a value from the heap is O(log
n). We need to remove n values so this process is O(n log n).

To heap sort we build heap O(n log n) then destroy the heap O(n log n).
Therefore the whole sorting algorithm has a runtime of O(n log n)

Our heap can be represented with an array. The simplest implementation of
heap sort would be to create a heap object:

CAUTION

A simple but not good implementation of heap sort

Python C++

but this is not actually a good implementation. The above would create a heap
as it goes meaning that we need to actually double the data storage as the
heap itself would be an array that is as big as data. Thus, the function would
have the same drawback as merge sort. Furthermore building a heap by
multiple insertions is actually slower than making a heap in place. Thus,
instead of building an actual heap with a heap object, we will implement heap
sort by turning the array into a heap in place then removing from it in place.

def heap_sort(mylist):

the_heap=Heap() # we assume we have created some Heap

Object

size = len(mylist)

for i in range(0,size):

the_heap.insert(mylist[i])

for i in range(0,size):

mylist[i]=the_heap.front()

the_heap.delete()

//simple but not correct way to heap sort an array

void heapSort(int data[],int size){

Heap theheap;

for(int i=0;i<size;i++){

theheap.insert(data[i]);

}

for(int i=0;i<size;i++){

data[i]=theheap.front();

theheap.delete();

}

}

One way we can do this by borrowing the idea from insertion sort... in that
algorithm we start off by hiving off the first element and saying that it is a
sorted array. We then "insert" successive elements into this sorted array so
that it stays sorted.

Remember that a heap uses every element of the array without any sort of
gaps. If you have a heap with n elements, you need n element array to
represent the heap. If you took a value out, then the array size decreases by 1.
After doing a removal, you effectively end up with an open spot at the back of
the array. Thus, we sort by filling those open spots with the value being
removed, forming a sorted list as the values being removed will come out
based on their priority ordering.

Thus heap sort works like this:

1. we build a heap in place (turn the array of unsorted numbers into a heap)
2. we remove a value from the heap and place that value at the end of the

array.

One key thing we have to change though is the priority. We actually need to
ensure that items that should go towards the end of the array is considered
highest priority for the heap. Thus if we were sorting an array in ascending
order (small to big) we should give larger values a higher priority.

Heapify
Since our heap is actually implemented with an array, it would be good to have
a way to actually create a heap in place starting with an array that isn't a heap
and ending with an array that is heap. While it is possible to simply "insert"
values into the heap repeatedly, the faster way to perform this task is an
algorithm called Heapify.

In the Heapify Algorithm, works like this:

Given a node within the heap where both its left and right children are proper
heaps (maintains proper heap order) , do the following:

• If the node has higher priority than both children, we are done, the entire
heap is a proper heap

• Otherwise
◦ swap current node with higher priority child
◦ heapify() that subtree

Effectively what is happening is that we already know that both the left and
right children are proper heaps. If the current node is higher priority than both
children then the entire heap must be proper

However if its not then we do a swap, this means that the current node's value
has now gone down into one of the subtrees. This could cause that subtree to
no longer be a heap because the root of that subtree now has a value of lower
priority than it use to have. so we heapify the subtree.

Building a maxheap in place
This example will start with an array that is not heap. It will perform heapify()
on it to form a max heap (bigger values have higher priority). In each of the
diagrams below, the argument to heapify() is the index corresponding to the
node

Firstly, all leaf nodes are valid heaps. Since they have no subtree, we don't
need to deal with those nodes. They are highlighted in green in this next
picture. Our algorithm therefore starts at the first non-leaf node from the
bottom. This node is at index (n-2)/2 where n is the total number of values in
our heap.

The heapify function takes the index of the root of the heapify routine (ie we
know that nodes children are heaps, and we are looking at it from that node
down.

heapify(3)
First node to consider is the node with 5 (index 3). the left subtree is lower
priority and the right subtree doesn't exist so we do nothing.

heapify(2)
Second node to consider is 3 (index 2). both 4 and 7 are bigger than 3 and thus
have higher priority. However, 7 is higher priority than 4, so we swap these two
values. 3 is now in a leaf node and thus we can stop.

heapify(1)
Next consider the node with 6. 6 is higher priority than 5 but not higher priority
than 8, so we swap them. 6 is now in a leaf node and thus we can stop.

heapify(0)
Lastly we consider the node 1. both 8 and 7 have higher priority than 1, but 8
is higher priority than 7 and thus we swap 8 and 1 first.

At this point we need to heapify the subtree that now has 1 as it's root (index
1). We swap it with the higher priority child (6 in this case). Notice that
because we won't need to do anything to the right subtree with 7 as root, as
that subtree was not modified.

After the final swap we have a proper max heap

Once the heap is built, we continuously remove the highest priority value from
the heap and place it at the back of the array.

Binary Search Trees
Binary search trees (BST) are binary trees where values are placed in a way
that supports efficient searching. In a BST, all values in the left subtree value in
current node < all values in the right subtree. This rule must hold for EVERY
subtree, ie every subtree must be a binary search tree if the whole tree is to be
a binary tree. The following is a binary search tree:

The following is NOT a binary search tree as the values are not correctly
ordered:

A binary search tree allows us to quickly perform a search on a linking
structure (under certain conditions which we will explore later). To find a value,
we simply start at the root and look at the value. If our key is less than the
value, search left subtree. If key is greater than value search right subtree. It
provides a way for us to do a "binary search" on a linked structure which is not
possible with a linear linked list. During the search, we will never have to
search the subtrees we eliminate in the search process... thus at worst,
searching for a value in a binary search tree is equivalent to going through all
the nodes from the root to the furthest leaf in the tree.

Insertion
To insert into a binary search tree, we must maintain the nodes in sorted order.
There is only one place an item can go. Example Insert the numbers 4,2,3,5,1,
and 6 in to an initially empty binary search tree in the order listed. Insertions
always occur by inserting into the first available empty subtree along the
search path for the value:

Insert 4:

Insert 2: 2 is < 4 so it goes left

Insert 3: 3 is less than 4 but more than 2 so it goes to left of 4, but right of 2

Insert 5: 5 is > 4 so it goes right of 4

Insert 1: 1 is < 4 so it goes to left of 4. 1 is also < 2 so it goes to left of 2

Insert 6: 6 is > 4 so it goes to right of 4. 6 is also > 5 so it goes to right of 5

Removal
In order to delete a node, we must be sure to link up the subtree(s) of the node
properly. Let us consider the following situations.

Suppose we start with the following binary search tree:

Suppose we were to remove 7 from the tree. Removing this node is relatively
simple, we simply have to ensure that the pointer that points to it from node 6
is set to nullptr and delete the node:

Now, Lets remove the node 6 which has only a left child but no right child. This
is also easy. all we need to do is make the pointer from the parent node point
to the left child.

Thus our tree is now:

Now suppose we wanted to remove a node like 8. We cannot simply make 4
point to 8's child as there are 2 children. While it is possible to do something
like make parent point to right child then attach left child to the left most
subtree of the right right child, doing so would cause the tree to be bigger and
is not a good solution.

Instead, we should find the inorder successor (next biggest descendent) to 8
and promote it so that it replaces 8.

The inorder successor can be found by going to the right child of 8 then going
as far left as possible. In this case, 9 is the inorder sucessor to 8:

The inorder successor will either be a leaf node or it will have a right child only.
It will never have a left child because we found it by going as far left as
possible.

Once found, we can promote the inorder successor to take over the place of
the node we are removing. The parent of inorder successor must link to the
right child of the inorder succesor.

In the end we have:

Traversals
There are a number of functions that can be written for a tree that involves
iterating through all nodes of the tree exactly once. As it goes through each
node exactly 1 time, the runtime should not exceed O(n)

These include functions such as print, copy, even the code for destroying the
structure is a type of traversal.

Traversals can be done either depth first (follow a branch as far as it will go
before backtracking to take another) or breadfirst, go through all nodes at one
level before going to the next.

Depth First Traversals
There are generally three ordering methods for depth first traversals. They are:

• preorder
• inorder
• postorder

In each of the following section, we will use this tree to describe the order that
the nodes are "visited". A visit to the node, processes that node in some way. It
could be as simple as printing the value of the node:

Preorder traversals

• visit a node
• visit its left subtree
• visit its right subtree

4, 2, 1, 3, 8, 6, 5, 7, 14, 13, 9, 11, 10, 12, 15, 16

Inorder traversals:

• visit its left subtree
• visit a node

• visit its right subtree

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16

Notice that this type of traversal results in values being listed in its sorted
order

Postorder traversals:

• visit its left subtree
• visit its right subtree
• visit a node

1, 3, 2, 5, 7, 6, 10, 12, 11, 9, 13, 16, 15, 14, 8, 4

This is the type of traversal you would use to destroy a tree.

Breadth-First Traversal
A breadfirst traversal involves going through all nodes starting at the root, then
all its children then all of its children's children, etc. In otherwords we go level
by level.

Given the following tree:

A breadthfirst traversal would result in:

4, 2, 8, 1, 3, 6, 14, 5, 7, 13, 15, 9, 16, 11, 10, 12

BST Implemenation
To implement a binary search tree, we are going to borrow some concepts from
linked lists as there are some parts that are very similar. In these notes we will
look a few of the functions and leave the rest as an exercise.

Similar to a linked list, A binary search tree is made up of nodes. Each node
can have a left or right child, both of which could be empty trees. Empty trees
are represented as nullptrs. The binary search tree object itself only stores a
single pointer that points at the root of the entire tree. The data stored within
the nodes must be of some type that is comparable. We will thus begin our
binary search tree class declaration in a similar manner to that of a linked list.
The code for each of the functions will be filled in later in this chapter.

Python C++

class BST:

class Node:

Node's init function

def __init__(self,data=None,left=None,right=None):

self.data = data

self.left = left

self.right = right

#BST's init function

def __init__(self):

self.root = None

def insert(self, data):

...

If you rename the data members above you actually see that its pretty similar
to that of a doubly linked list... The key to the operations of a BST lies not in
what data is declared, but rather how we organize the nodes. The next 2
sections of the notes we will look at the implementation of the functions listed
above. In some cases a function may be written both iteratively and
recursively and both versions will be looked at

template <typename T>

class BST{

struct Node{

T data_;

Node* left_;

Node* right_;

Node(const T& data, Node* left=nullptr, Node*

right=nullptr){

data_=data;

left_=left;

right_=right;

}

};

//single data member pointing to root of tree

Node* root_;

public:

BST(){...}

void insert(const T& data){...}

bool search(const T& data) const {...}

void breadthFirstPrint() const {...}

void inOrderPrint() const {...}

void preOrderPrint() const {...}

~BST(){...}

};

Constructor (C++)
When we create our tree, we are going to start with an empty tree. Thus, our
constructor simply needs to initialize the data member to nullptr.

template <typename T>

class BST{

struct Node{

T data_;

Node* left_;

Node* right_;

Node(const T& data, Node* left=nullptr, Node*

right=nullptr){

data_=data;

left_=left;

right_=right;

}

};

//single data member pointing to root of tree

Node* root_;

public:

BST(){

root_=nullptr;

}

...

};

Iterative Methods
This section looks at the functions that are implemented iteratively (or the
iterative version of the functions)

Insert - Iterative version
This function will insert data into the tree. There are two ways to implement
this function, either iteratively or recursively. We will start by looking at the
iterative solution. In this situation, we begin by taking care of the empty tree
situation. If the tree is empty we simply create a node and make root_ point to
that only node. Otherwise, we need to go down our tree until we find the place
where we must do the insertion and then create the node.

Python C++

class BST:

class Node:

Node's init function

def __init__(self, data=None, left=None, right=None):

self.data = data

self.left = left

self.right = right

BST's init function

def __init__(self):

self.root = None

def insert(self, data):

if self.root is None:

template <typename T>

class BST{

struct Node{

T data_;

Node* left_;

Node* right_;

Node(const T& data, Node* left=nullptr, Node*

right=nullptr){

data_=data;

left_=left;

right_=right;

}

};

//single data member pointing to root of tree

Node* root_;

public:

...

void insert(const T& data){

if(root_==nullptr){

root_=new Node(data);

}

else{

bool isInserted=false; //set to true when once we

insert the node

Node* curr=root_; //used to iterate through

nodes

while(!isInserted){

if(data < curr->data_){

//data belongs in left subtree because it is

//smaller than current node

if(curr->left_){

//there is a node to the left so go left

curr=curr->left_;

}

else{

//there isn't a node to left

Search - Iterative version
The key operation that is supported by a binary search tree is search. For our
purposes we will simply look at finding out whether or not a value is in the tree
or not. The search operation should never look at the entire tree. The whole
point of the binary search tree is to make this operation fast. We should search
it so that we can eliminate a portion of the tree with every search operation.

To do this we start at the root and compare that node's data against what we
want. If it matches, we have found it. If not, we go either left or right
depending on how data relates to the current node. If at any point we have an
empty tree (ie the pointer we are using for iterating through the tree becomes
nullptr) we stop the search and return false. If we find a node that matches we
stop and return true.

Python C++

class BST:

class Node:

Node's init function

def __init__(self, data=None, left=None, right=None):

self.data = data

self.left = left

self.right = right

BST's init function

def __init__(self):

self.root = None

def search(self, data):

template <typename T>

class BST{

struct Node{

T data_;

Node* left_;

Node* right_;

Node(const T& data, Node* left=nullptr, Node*

right=nullptr){

data_=data;

left_=left;

right_=right;

}

};

//single data member pointing to root of tree

Node* root_;

public:

bool search(const T& data) const {

Node* curr=root_; //used to iterate through tree

bool found=false; //true if we find it false if we

haven't yet

//loop until we either find it or we have no more tree

while(!found && curr){

if(data==curr->data_){

found=true;

}

else if(data < curr->data_){

curr=curr->left_;

}

else{

curr=curr->right_;

}

}

return found;

}

};

Breadth First Print
Writing a breadth-first traversal involves using the queue data structure to
order what nodes to deal with next. You want to deal with the nodes from top
to bottom left to right, and thus you use the queue to order the nodes. Here is
an example of how we will do this.

We begin by declaring a queue (initially empty)

Prime the Queue
We start prime the queue by putting the root into the queue. In this example,
we always check to ensure no nullptrs are ever added to the queue.
Alternatively we allow the addition of nullptrs and decide how to deal with
them when we dequeue.

Dequeue front of node and process it by adding its non-nullptr children into the
queue, print the node

Continue by dequeuing front node and processing it in same manner

Repeat again as 25 only has a right child only it is added

Repeat once again with 5 which has no children thus nothing is added to queue

Repeat again with 15 (also no children)

Repeat with 35 and add its children

Continue by removing 30

And one more time with 40

At this point queue is empty and thus, we have completed our breadthfirst
print of the tree.

In code form, this is how we will write our code (we assume we have a
template queue available:

Python C++

import queue

class BST:

class Node:

Node's init function

def __init__(self, data=None, left=None, right=None):

self.data = data

self.left = left

self.right = right

BST's init function

template <typename T>

class BST{

struct Node{

T data_;

Node* left_;

Node* right_;

Node(const T& data, Node* left=nullptr, Node*

right=nullptr){

data_=data;

left_=left;

right_=right;

}

};

//single data member pointing to root of tree

Node* root_;

public:

...

void breadthFirstPrint() const{

Queue<Node*> theNodes; //we assume the queue class has

these functions

//enqueue(), dequeue(), front(),

isEmpty()

//prime queue

if(root_){

theNodes.enqueue(root_);

}

//while we have nodes to deal with

while(!theNodes.isEmpty()){

//deal with first node and remove it from queue

Node* curr=theNodes.front();

theNodes.dequeue();

if(curr->left_){

//if the current node has a left child add it to

queue

theNodes.enqueue(curr->left_);

}

if(curr->right_){

Recursive Methods
One of the way to look at a binary search tree is to define the tree recursively.
A binary search tree is either empty or consists of a root node who has two
children each of which is a binary search tree. This recursive nature makes
certain functions easy to write recursively. This portion of the implementation
will look at how to write member functions recursively.

For all recursive functions involving a binary search tree, you typically need at
least one argument that gives you access to the root of a subtree. The public
interfaces for these recursive functions will typically start it off by passing in
the root as the first argument.

When writing these functions, we look at the problem in terms of the subtree.
Often the base case will involve dealing with an empty subtree (or doing
nothing with an empty subtree). This section of the notes will deal with some
details about how this can be accomplished and some typical ways of dealing
with recursive solutions.

search - recursive function
This is the same function as the iterative version of the search (does the same
thing). Only difference is that it is written recursively.

As stated earlier, recursive functions for our trees typically involve looking at it
in terms of what to do with a tree (defined as root of the tree).

For the recursive search() function, we will need to write a recursive function
and call it from the public search() function. The recursive function will not only
have data for the argument but also the root of the subtree where we will be

trying to find the data. Note that we cannot use the data member root because
we will lose the tree if we do. We must actually pass in the argument so that it
can change in each call without causing the root to be modified. Thus, our
recursive function has the following prototype:

Python C++

The above function returns true if data is in the tree who's root is pointed to by
subtree, false otherwise.

As with all recursive cases we always want to start by figuring out the base
case of the recursive function

Under what circumstances would it be so easy to find the answer we can
confidently return the result immediately? So, given a tree (where all we see is
the address of the root node) what situations would allow us to know that we
have a result.

In our case there are two base cases:

• the tree is empty. If the tree is empty, the value can't be in the tree, so we
can return false immediately.

• the tree is not empty but the value we want is in the root of the tree. If that
is the case we don't need to look at the rest of the tree. We already know
that its there.

def r_search(self, data, subtree)

bool search(const T& data, const Node* subtree) const

CAUTION

a tree being empty is usually a base case for recursive functions involving
a binary search tree. If this is not a base case you are considering, you
should ask why and what would happen if you got an empty tree and
whether or not you have made a mistake.

So... what if its not a base case? Well if its not a base case, then we know the
following:

• there is a tree with at least a root node
• the data isn't in the root node

Thus if the value exists, its either in the left subtree or the right subtree of the
root. As the BST places data so that values in right subtree is bigger than value
in current node and value in left is smaller, which subtree we look at depends
on how the data compares against the root. If the data is smaller than value in
root, then it could only be in left subtree if it there at all. Similarly if it is bigger,
it could only be in right subtree. Therefore to find if value is in tree we simply
make the recursive call to search() using either subtree's left or subtree's right.

INFO

For any function that involves looking for a value in the tree it is never
more correct to look at both left and right. The difference will be O(log n)
vs O(n)

Python C++

class BST:

template <typename T>

class BST{

struct Node{

T data_;

Node* left_;

Node* right_;

Node(const T& data, Node* left=nullptr, Node*

right=nullptr){

data_=data;

left_=left;

right_=right;

}

};

//single data member pointing to root of tree

Node* root_;

//recursive search() function. This function returns

//true if data is found in tree with root subtree,

//false otherwise

bool search(const T& data, const Node* subtree) const{

bool rc=false;

//if it tree is empty, the if is skipped and we return

false

if(subtree != nullptr){

if(data == subtree->data_){

//base case 2: we find it in the root of subtree

rc=true;

}

else if(data < subtree->data_){

//data is smaller than that stored in root. If

we find it,

//it will be in left subtree, so we call search

to see if its

//there and return the result

rc=search(data,subtree->left_);

}

else{

Insert - recursive version
Similar to search, we must write a separate private recursive insert() function
that is called from the public insert function. Similar to search(), the recursive
insert function also requires a pointer to the node we are trying to insert the
data into. We think about this as inserting data into subtree. In python, there
isn't really a pass by reference concept. As such, we will need to utilize the
return statement in order to correctly attach our new tree.

Python C++

Similar to search, we must write a separate private recursive insert() function
that is called from the public insert function. Similar to search(), the recursive
insert function also requires a pointer to the node we are trying to insert the
data into. We think about this as inserting data into subtree. However, we
actually want to modify the pointer being passed in so we are going to pass in
a reference to the pointer instead of just the pointer:

As with search, we want to start by figuring the base and recursive cases. For
the base case, if the tree was empty we will simply make the current node the
root of the tree. If not, we will want to insert the value either into the left or
right subtree depending on how it compares to the data in the root of the
subtree.

def insert(self, data, subtree):

void insert(const T& data, Node*& subtree);

Python C++

class BST:

class Node:

Node's init function

def __init__(self,data=None,left=None,right=None):

self.data = data

self.left = left

self.right = right

#BST's init function

def __init__(self):

self.root = None

def ins(self, data, subtree):

if(subtree==None):

return BST.Node(data)

elif(data < subtree.data):

subtree.left = self.ins(data,subtree.left)

return subtree

else:

subtree.right = self.ins(data, subtree.right)

return subtree

def recursive_insert(self,data):

self.root = self.ins(data,self.root)

class BST{

struct Node{

T data_;

Node* left_;

Node* right_;

Node(const T& data, Node* left=nullptr, Node*

right=nullptr){

INFO

There are other solutions where you would check if left/right child is nullptr
and then simply make the new node if it is instead of doing the recursive
call. Doing it that way requires an extra check to ensure root itself isn't
null in the original insert function. Its takes a bit more work to ensure the
code works for all cases.

InOrder Print function
To print all values in the tree from smallest to biggest, we can write the
function recursively. This is an example of an inorder tree traversal. That is we
will visit every node in the tree exactly one time and process it exactly one
time.

This function is most easily written recursively. As with all other recursive
function for bst we will pass in the root of the subtree. This function will be
called from the public inOrder print() function.

The base case for this function is simply that of an empty tree. If the tree is
empty, there is nothing to print so we do nothing and exit function.

if tree isn't empty we want to start by printing all values smaller than the
current node (stored in left subtree), then the current node then all the values
bigger than the current node (stored in right subtree). if its a tree, we'll use the
inOrderPrint() function to print those so that they will be printed in order also.

Python C++

class BST:

class Node:

Node's init function

def __init__(self,data=None,left=None,right=None):

self.data = data

self.left = left

self.right = right

#BST's init function

def __init__(self):

self.root = None

def print_inorder(self, subtree):

if(subtree != None):

self.print_inorder(subtree.left)

print(subtree.data, end = " ")

self.print_inorder(subtree.right)

def print(self):

self.print_inorder(self.root)

print("")

class BST{

struct Node{

T data_;

Node* left_;

Node* right_;

Node(const T& data, Node* left=nullptr, Node*

right=nullptr){

data_=data;

left_=left;

right_=right;

}

};

INFO

In this solution notice we don't check the pointers before we make the
function calls for recursive functions... the first thing we do when we enter
the function is ensure the pointer isn't nullptr so there is no need to do a
check before hand. This method has the advantage that it doesn't create a
special case for empty trees (ie root_==nullptr). root_ is handled the same
as any other other Node pointer.

Pre Order Print
The pre-order print function is similar to the inorder print function except that
we print the current node before printing its subtrees. This is the ordering that
would be used if we were to do something like listing the contents of a file
system.

The code for this is pretty much identical to inOrderPrint(). The only difference
is in when we print the current node. What we want to do is print the current
node, then its left and right subtrees

Python C++

class BST:

class Node:

Node's init function

def __init__(self,data=None,left=None,right=None):

self.data = data

self.left = left

self.right = right

#BST's init function

class BST{

struct Node{

T data_;

Node* left_;

Node* right_;

Node(const T& data, Node* left=nullptr, Node*

right=nullptr){

data_=data;

left_=left;

right_=right;

}

};

Node* root_;

//prints the values of the tree who's root is stored in

subtree

//by printing the value in a node then the values in its left

subtree

//followed by the values in the right subtree

void preOrderPrint(const Node* subtree) const{

//base case is we have an empty tree... in that case we

do nothing

//and exit the function

if(subtree!=nullptr){

//print value in current node

std::cout << subtree->data_ << std::endl;

//print left subtree

preOrderPrint(subtree->left_);

//print right subtree

preOrderPrint(subtree->right_);

}

}

public:

...

Destructor
A destructor must deallocate every node in the tree. There are different ways
that this could be done but the simplest is to write a post-order tree traversal.
The reason its a traversal is simply because we need to visit every node in the
tree and destroy it. The reason it has to be done in a post order manner is
because we must first destroy both subtrees attached to a node before
deleting the node or we will lose access to those subtrees.

Similar to the print functions, the destructor will be written by private recursive
function that accepts a the root of the subtree we are trying to deallocate. We
will call this function destroy:

Note that because we actually don't care about changing the value of the
pointers themselves we don't need a & after the Node* part. Just go through
and deallocate every node

As with all the other traversals, we have a base case where if the tree is empty
we do nothing. Otherwise we will simply first begin by destroying the left
subtree, then the right subtree then we can deallocate the root node of the
current subtree (pointed to by the argument subtree)

void destroy(Node* subtree);

class BST{

struct Node{

T data_;

Node* left_;

Node* right_;

Node(const T& data, Node* left=nullptr, Node*

right=nullptr){

data_=data;

Augmented Data
Structures
An augmented data structure is a data structure where we add an extra piece
of information so that we can acheive better performance. From a user's
perspective the augmented data structure works no differently than the non-
augmented version.

We will be looking at two augmented data structures in this section and they
both help to solve a problem with the basic version of the BST.

Consider the following set of numbers:

5, 3, 7, 2, 9, 4, 6, 1, 8

If we were to insert each of these values in order into a BST using the
algorithm we currently have studied, our tree would look like this:

However, suppose we were to created a BST with exactly the same numbers
but in the following order instead:

1, 2, 3, 4, 5, 6, 7, 8, 9

The tree created by the insertion algorithm would look like this:

In the first case, the tree looks like tree. In the second case it looks like a stick.
The problem of a tree that looks like a stick is that its run time for searching is
not log n. its basically a linked list and its performance will match that of a
linked list and thus search will perform in O(n) time.

As we cannot know how our data structure will be used, or prevent someone
from using our data structure with sorted data, it would be good if we can
ensure that no matter how the data comes in, the tree will be tree shaped.

In this chapter we will look at how we can add a little bit of extra information to

our tree and use that to help ensure our tree does not turn into a stick no
matter how we receive our data.

Tree Balance
Before we consider how to look make our tree behave properly, we should
consider what it means for a tree to be "tree shaped". We want something a
little more formal than just "tree shaped". In this section we look into these
definitions:

Perfectly Balanced Binary Trees
A binary tree is perfectly balanced if for every node within the tree, the number
of nodes in its right and left subtrees differ by no more than one.

Note how this definition says that this is true for every node... not just the root.

So if we take any subtree within a perfectly balanced tree, that subtree will be
perfectly balanced.

Here are a few trees that are perfectly balanced.

Here are a few that are not perfectly balanced and why they are not.

Notice that with this definition, a complete binary tree (which we said was a
good tree) may not be pefectly balanced. For example this tree is not perfectly
balanced even though it is complete.

What this tells you is that the perfectly balanced tree description is too
restrictive and will exclude many trees that actually have same performance as
that of a perfectly balanced tree. Getting a tree to be perfectly balanced is also
an expensive process. Thus, we typically will allow for a more relaxed definition
of what a good "tree shape" is

Height Balanced Binary Trees
A binary tree is height balanced if for every node within the tree, the height of
its right and left subtrees differ by no more than one.

Notice how this definition is almost the same as that of perfectly balanced
trees. The only difference is that we measure the height of the tree as opposed
to the number of nodes in the tree. This is useful as the height measures the
maximum number of nodes we will consider.

Similar to perfectly balanced trees, the height balanced definition is recursively
applied. Thus every subtree of a height balanced tree is also height balanced.

Here are some height balanced binary trees

Here are some non-height balanced binary trees

By ensuring that the trees on either side of a node are never significantly taller
than each other, we can ensure that any operation done will never visit more
nodes regardless of the value of the operand. This is how AVL trees work. By
storing the height of a node's subtree in each node, a node balance can easily
be calculated and used to maintain height balance

Branches
A branch is defined as all the nodes from the root of the tree to a leaf inclusive
of both root and leaf. Another way of looking at whether a tree is "tree shaped"
is to consider the differences between the length of the the branches. We can
look at whether or not a tree is good by looking at the differences in the length
of the branches. This is how red-black trees work. They use a set of node
colouring rules to ensure that no branch is more than twice the length of any

other branch in the tree.

AVL Trees
An AVL tree creates and maintains a height balanced binary search tree. A
height balanced tree is either empty or the height of the left and right subtrees
differ by no more than 1. A height balanced tree is at most 44% taller than a
perfectly balanced tree and thus, a search through a height balanced tree is
O(log n). Insert and delete can also be done in O(log n) time.

Height Balance
AVL trees work by ensuring that the tree is height balanced after an operation.
It does this by storing the height of every subtree in it's root. The storing of this
height is the augmentation... we add this extra bit of info to every node and
ensure its correctness after each operation that might modify a tree. We can
then use this information to ensure that our tree is height balanced. By
knowing how tall each subtree is, we can tell whether or not any subtree is too
tall by calculating the balance from the height.

The balance of any node is calculated as:

When a tree is height balanced the balance of every node is either -1, 0 or +1

In an AVL tree, whenever we do any operation that may modify the tree, we
ensure that no node's balance ends up as anything other than -1, 0 or +1.

Note that storing of the height in each node is essential. We cannot calculate
the height as finding the height of a tree with n nodes is O(n)

Node's balance = height of right - height of left

of node subtree subtree

The height balance of a node is calculated as follows:

Height Balance Implication
Recall that the following is the node's balance formula:

The above formula means that if the right subtree is taller, the height balance
of the node will be positive. If the left subtree is taller, the balance of the node
will be negative.

Node's balance = height of right - height of left

of node subtree subtree

Insertion
Insertion in AVL tree is starts out similar to regular binary search trees. That is
we do the following:

• Find the appropriate empty subtree where new value should go by
comparing with values in the tree.

• Create a new node at that empty subtree.
• New node is a leaf and thus will have a height balance of 0
• go back to the parent and adjust the height balance.
• If the height balance of a node is ever more than 1 or less than -1, the

subtree at that node will have to go through a rotation in order to fix the
height balance. The process continues until we are back to the root.

• NOTE: The adjustment must happen from the bottom up

Example
Suppose we have start with the following tree (value on top is the value, value
on bottom is the height balance

Insert 30

At this point, we have adjusted all the height balances along the insertion path
and we note that the root node has a height balance of 2 which means the tree
is not height balanced at the root.

In order to fix our tree, we will need to perform a rotation

Insert 27

We start with our tree:

Now we find the correct place in the tree and insert the new node and fix the
height balances

Now, as we reach node 25 and see that it the height balance is +2. If we then
look at it's child's height balance we find that it is -1. As the signs are different,
it indicates that we need a double rotation. Different signs indicate that the
unbalance is in different directions so we need to do a rotation to make it the
same direction then another to fix the unbalance.

Why does this work?
Single Rotation
We always fix nodes starting from the insertion point back to the root. Thus,
any node in the insertion path further towards leaf nodes must already be
fixed.

Consider the following idea of what an avl tree looks like:

In this diagram, we have two nodes A and B and we see their height balance.
We know that the subtrees X, Y and Z are valid avl trees because they would
have been fixed as we process our tree back to the root.

From here we also know that:

While we don't know how tall X, Y and Z are, we know their relative heights
because we know the height balance.

all values < A < all values < B < all values

in X in Y in Z

Thus, if X has a height of h, B must be h+2 tall because the height balance at A
is +2. This means that the right subtree at B is 2 taller than A.

Continuing on, we know that Z is the taller of the two subtrees of B because
the height balance is +1, and thus Z must be h+1 tall while Y must be h tall.

A rotation repositions B as the root of the tree, makes node A the left child of B.
Make Y the right child of A.

Given that X, Y and Z are unchanged, the height balance at A and B will
become 0.

The mirror of the above is true for single left rotation

Double Rotations
A similar explanation of why double rotations work can be reasoned out by
looking at the following tree:

We know that W, X, Y and Z are all valid avl trees. We also know the following
about the values in each of the trees and nodes

Now... we know the height balance of A and B (off balance node and child) we
do not know the exact height balance of C. However, we do know that it is a
valid avl tree, so C's height balance must be either -1, 0 or +1.

So, if C's height balance is 0, then both x and y will have height of h.

if C's height balance is +1 then y will be h and x would be h-1

if C's height balance is -1 then x would be h and y would h-1

Perform a double rotation:

all all all all

values < A < values < C < values < B < values

in W in X in Y in Z

After the rotation is completed, notice that the position of the subtrees W,X, Y
and Z along with the nodes A, B and C are placed in a way where their ordering
is properly maintained.

Furthermore, The height balance of C becomes 0 regardless of what it was
initially. The final height balance of A and B depends on what the original
height balance of C was:

original height
balance of C

height
of X

height
of Y

final height
balance of A

final height
balance of B

-1 h h-1 0 +1

0 h h 0 0

+1 h-1 h -1 0

Deletion
The deletion algorithm for AVL trees must also keep the tree height balanced.
This section will look at how deletion works.

The deletion algorithm does the following:

• In general follow BST deletion rules.
◦ if node is leaf delete node, set pointer from parent to nullptr
◦ if node has one child, have parent point to only child
◦ if node has two children replace deleted node with inorder successor

• Because a deletion could potentially shorten a tree, we might need to
adjust the tree. Starting with the deleted node (which may not actually be
the node that contains the value we are getting rid of... more on this later)
work our way back up to root, fix the height/balance info and rotate as
needed.

The rest of this section will look at how it works

Deletion always removes a leaf node
Deletion always removes a leaf node. The previous statement may seem a bit
odd because it seems like it can't be true, but it is. Note that node being
remove isn't necessarily the node where value being removed was originally
found. Lets consider the three deletion cases to explain why it is true:

Value is found in a leaf node

In this case, clearly the node to be removed is a leaf as we found it there. Thus,
we get rid of it, adjust or height/balance values going back up the tree

Value is in a node with exactly one child

A node with only one child means that the only child is a leaf. The reason for
this is because our tree is height balanced to start with. If the only child had a
child, the node wouldn't have been height balanced as illustrated in the
following diagram:

Thus, what effectively happens is that we end up with a tree that is shaped like
we were removing B

Value is in a node with exactly two children

The algorithm to remove a node with two children is to replace the node with
its inorder successor node. This node is found by going one node to the right
then going left until you can't. The inorder successor itself can only have a
right child (if it had a left child it wouldn't be the inorder successor). As with
the case of nodes with only one child, the inorder sucessor's right child must
be a leaf because the inorder successor must have been height balanced
before the deletion operation.

Fixing the tree
When will we need to fix the tree?

Clearly if the deletion doesn't shorten its subtree, there is nothing that needs
to be done.

Thus, we only need to consider what happens if deleting the node causes the
tree to shorten. In the examples below we only consider those situations.

Let us consider the following. In each case, B is the node being removed, A is
some node along the path to B

Balance of A was initially 0

Suppose that A initially had a balance of 0. Removing B, shortened the blue
subtree. However, as the balance was 0 at A, A's balance will simply go either
to +/- 1. No rotation needed. Also not only was no rotation needed, the height
of the tree at A is actually exactly the same as it was before the deletion and
thus, we can stop fixing the tree as nodes further up will not be affected

Balance of A was initially +/-1

Two things can occur. In the first case our node comes from the taller of the
subtrees tree and it causes the tree to shorten.

If that is the case then we do not have to do any rotations at A because A's
balance will become 0. However, the subtree with root A did get shorter, so we
must continue going up the tree as other nodes further up may require a
rotation

The second case is when we take out a node from the shorter subtree:

If we did this then our balance will go to +/- 2. This would require rebalancing.
Like an insertion, rebalancing is simply a matter of applying a single or double
rotation. We simply need to follow the same rules and perform the rotation

After a rebalancing a node the subtree might have become shorter than it was
because of the rotation, and thus we may need to go further up the tree to fix
it.

Red Black Trees
Red-Black Trees are binary search trees that are named after the way the
nodes are coloured.

Each node in a red-black tree is coloured either red or black. The height of a
red black tree is at most 2 * log(n+1).

A red black tree must maintain the following colouring rules:

1. every node must have a colour either red or black.
2. The root node must be black
3. If a node is red, its children must be black (note that this also implies that

red nodes cannot have red parents)
4. Every path from root to a null node must have exactly the same number

of black nodes.

INFO

null nodes are also sometimes called null leafs. these are not really
nodes.. they are the "nodes" that null pointers point to... so we when we
think about counting black nodes we think about how many black nodes
there are to every nullptr in the tree

Insertion
We will begin our look at Red-Black trees with the bottom up insertion
algorithm. This insertion algorithm is similar to that of the insertion algorithm
we looked at for AVL trees/Binary search trees.

Insert the new node according to regular binary search tree insertion rules. Of
the 4 colouring rules, the one rule we don't want to break is rule number 4.
Everything we do is to avoid breaking rule 4 (every path from root to every null
leaf has same number of black nodes). Thus, New nodes are added as red
nodes. We then "fix" the tree if any of the rules are broken.

Note that because we inserted a red node to a proper red-black tree, the only 2
rules that might be broken are:

1. rule 2: root must be black
2. rule 3: red node must have black children

Rule 1 is pretty much not broken as we coloured it red. We also won't break
rule 4 because we added a red node so the number of black nodes has not
increased.

General Insertion Algorithm
To insert into a red-black tree:

1. find the correct empty tree (like bst) and insert new node as a red node.
2. working way up the tree back to parent fix the tree so that the red-black

tree rules are maintained.

Fixing nodes:
• If root becomes red, change it to black.

◦ This won't break any rules because you are just adding 1 black node to
every branch of the tree, the number of black nodes increase by 1
everywhere. This can only happen as the root as it is the only node
that is part of every path from root to nullleaf

• If there are two red nodes in a row:

◦ Identify the following nodes:
▪ upper red node as the Parent (P)
▪ the lower red node as the Child (C)
▪ parent of parent is Grandparent (G)
▪ sibling of Parent as Parent's sibling (PS)

◦ if the PS is black
▪ perform a rotation (look at G->P->C, if they form a straight line do

a zig-zig(single) rotation, if there is a bend, do a zig-zag (double
rotation)

▪ after rotation exchange G's colour with the node that took over G's
spot. In otherwords

▪ make which ever node (depends if it was zigzig or zigzag
rotation... it will either be P or C) that took over G's node black

▪ make G red
◦ if the PS is red

▪ exchange the colour of the grand parent with its two children. In
otherwords

▪ G becomes red
▪ P and PS becomes black

Example
Starting with an empty tree let us take a look at how red-black tree insertions
work.

In the pictures below, null nodes (empty subtrees) are denoted as black circles

Insert 30

All nodes are inserted as red nodes:

If the root is red, make it black:

Insert 50

Insert 50 as a red node, parent is black so we don't have to change anything

Insert 40

Inserting 40 as a red node.

Two red nodes in a row. Identify G, P, PS and C

• P - parent (upper red) - 50
• C - child (lower red) - 40
• G - grandparent 30
• PS - parent's sibling - null node to left of 30

What we do depends on colour of PS. In this case PS is black, so we will be
fixing this with a rotation

The type of rotation depends on the configuration of G, P and C. If the path is
from G to C is straight (both left or both right) do a zigzig (single) rotation. If it
is angled (left then right or right then left) we need to do a zigzag (double)
rotation.

In this case, we need to do a zig zag (double) rotation.

Rotate first 40 and 50

then rotate again with 30 and 40, this time doing a colour swap. A zigzag
rotation is just an extra step that is needed to make the insertion path go in
the same direction.

After rotations are complete, we exchange the colour between the node that
took over G's spot (40 in this case) and G. Thus, 40 becomes black and 30
becomes red.

Insert 20

inserting 20 as a red node.

Two red nodes in a row. Identify G, P, PS and C

• P - parent (upper red) - 30
• C - child (lower red) - 20
• G - grandparent - 40
• PS - parent's sibling - 50

What we do depends on colour of PS. In this case PS is red. Thus we exchange
colours between G and its two children:

Doing so breaks rule 2: roots must be black. Thus, we need to fix that. As it is
the root, we can just change it to black without causing other problems.

Insert 10

inserting 10 as a red node.

Two red nodes in a row. Identify G, P, PS and C

• P - parent (upper red) -20
• C - child (lower red) - 10
• G - grandparent 30
• PS - parent's sibling - null node to right of 30

What we do depends on colour of PS. In this case, the parent's sibling is black
(null nodes are black). Thus, we will fix this with a rotation. Rotations are
always done with G as the root of the rotation (the A in the rotation diagram)

This time, the path from G to P to C is "left" then "left". Thus, we only need to
perform a single rotation, followed by swapping the colours of G and the node

that took G's spot.

Finally we get:

2-3 Trees
A 2-3 Tree is a specific form of a B tree. A 2-3 tree is a search tree. However, it
is very different from a binary search tree.

Here are the properties of a 2-3 tree:

1. each node has either one value or two value
2. a node with one value is either a leaf node or has exactly two children

(non-null). Values in left subtree < value in node < values in right subtree
3. a node with two values is either a leaf node or has exactly three children

(non-null). Values in left subtree < first value in node < values in middle
subtree < second value in node < value in right subtree.

4. all leaf nodes are at the same level of the tree

Insertion
The insertion algorithm into a two-three tree is quite different from the
insertion algorithm into a binary search tree. In a two-three tree, the algorithm
will be as follows:

1. If the tree is empty, create a node and put value into the node
2. Otherwise find the leaf node where the value belongs.
3. If the leaf node has only one value, put the new value into the node
4. If the leaf node has more than two values, split the node and promote the

median of the three values to parent.
5. If the parent then has three values, continue to split and promote, forming

a new root node if necessary

Example:
Insert 50

Insert 30

Insert 10

Insert 70

Insert 60

Complexity Theory
Introduction to Computational
Theory

Complexity Theory
Over the course of this semester, we have considered many different
problems, data structures and algorithms. Aside from knowing what good
solutions are to common problems, it is also useful to understand the
theoretical aspects of computation. This section of the notes deal with
computational theory. Computational theory is actually divided into several
branches. This section of the notes will focus on the branch called complexity
theory which essentially classifies the difficulty of problems based on the
complexity of their solution. The difficulty is based on resource requirements
(such as time or space requirements).

There are many complexity classes but for our discussion we are going to be
focusing on just a few of these. In particular we are going to look at the
computation classes for decision problems. Decision problems are problems
where for any given input, you will end up with a "yes" or "no" answer. These
are the simplest answers.

Undecidable Problems
Some problems like the halting problems are undecidable. The halting problem
is described simply as this... is it possible to write a program that will
determine if any program has an infinite loop.

The answer to this question is as follows... suppose that we can write such a
program. The program InfiniteCheck will do the following. It will accept as input
a program. If the program it accepts gets stuck in an infinite loop it will print
"program stuck" and terminate. If the program does terminate, the
InfiniteCheck program will go into an infinite loop.

Now, what if we give the InfiniteCheck the program InfiniteCheck as the input
for itself.

If this is the case, then if InfiniteCheck has an infinite loop, it will terminate.

If infiniteCheck terminates, it will be stuck in an infinite loop because it
terminated.

Both these statements are contradictory. and thus, such a program cannot
exist.

P vs NP
P class Problems
P class problems are decision problems that can be solved in polynomial time.
Note that linear is polymial time, but so is quadratic... polynomial is essentially
nc where c is a constant. For example, matrix multiplication is a polynomial
class problem even though the solution is n2

NP class Problems
When we talk about "hard" problems then, we aren't talking about the
impossible ones like the halting problem. We are instead talking about
problems where its possible to find a solution, just that no good solution is

currently known.

The NP, in NP class stands for non-deterministic polynomial time. A non-
deterministic machine is a machine that has a choice of what action to take
after each instruction and furthermore, should one of the actions lead to a
solution, it will always choose that action.

A problem is in the NP class if we can verify that a given positive solution to
our problem is correct in polynomial time. In other words, you don't have to
find the solution in polynomial time, just verify that a solution is correct in
polynomial time.

Note that all problems of class P are also class NP.

NP-Complete Problems
A subset of the NP class problems is the NP-complete problems. NP-complete
problems are problems where any problem in NP can be polynomially reduced
to it. That is, a problem is considered to be NP-complete if it is able to provide
a mapping from any NP class problem to it and back.

NP-Hard
A problem is NP-Hard if any NP problem can be mapped to it and back in
polynomial time. However, the problem does not need to be NP... that is a
solution does not need to be verified in polynomial time.

P vs NP
One of the Millennium Prize Problems is the problem of P vs NP. It essentially
asks whether every problem that can be verified in P time is also solvable in P

https://en.wikipedia.org/wiki/Millennium_Prize_Problems

time. In essence are all NP class problem (NP and NP complete) solvable in P
time or not. This problem is easiest to visualize with the following diagram from
wikipedia:

The problem essentially is asking whether the diagram on the left is true or the
diagram on the right is true.

The first diagram basically means that there will some problems that are
verifiable in P time but cannot be solved in P time. The second diagram means
that any problem that can be verified in P time can also be solved in P time.

Appendix: Mathematics
Review
A certain familiarity with certain mathematical concepts will help you when
trying to analyze algorithms. This section is meant as a review for some
commonly used mathematical concepts, notation, and methodology. Where
possible analogies between mathematical and programming concepts are
drawn

Mathematical Notations and
Shorthands
Shorthands

shorthand meaning

iff if and only if

∴ therefore

≈ approximately

ab a * b

a(b) a * b

shorthand meaning

∥a∥ absolute value of a

⌈a⌉
ceiling, round aa up to next biggest whole number. Example:

⌈2.3⌉ = 3

⌊a⌋
floor, round aa down to the next smallest whole number.

Example: ⌊2.9⌋ = 2

Variables
In math, like programming, we use variables. Variables can take on some
numeric value and we use it as a short hand in a mathematical expression.
Before using a variable, you should define what it means (like declaring a
variable in a program)

For example:

"Let n represent the size of an array"

This means that the variable n is a shorthand for the size of an array in later
statements.

Functions
Similar to functions in programming, mathematics have a notation for
functions. Mathematically speaking, a function has a single result for a given
set of arguments. When writing out mathematical proof, we need to use the
language of math which has its own syntax

As a function works with some argument, we first define what the arguments
mean then what the function represents.

For example:

Let n represent the size of the array - (n is the name of the argument).

Let T (n) represent the number of operations needed to sort the array - T is the
name of the function, and it accepts a single variable n

We pronounce T (n) as "T at n". Later we will assoicate T (n) with a
mathematical expression that we can use to make some calculation. The
expression will be a mathematical statement that can be used to calculate the
number of operations needed to sort the array. If we supply the number 5, then
T (5) would be the number of operations needed to sort an array of size 5

Summary

T (n) - read it as T at n, we call the function T .

T (n) = n2 + n + 2 means that T (n) is the same as the mathematical
expression n2 + n + 2. Think of T (n) as being like the function prototype, and
n2 + n + 2 as being like the function definition

n can take on any value (unless there are stated limitations) and result of a
function given a specific value is calculated simply by replacing n with the
value

T (5) = 52 + 5 + 2 = 32 (we pronounce T(5) as "T at 5")

{% hint style="danger" %} When we talk about big-O notation (and related
little-o, theta and omega notation) those are NOT functions. For example O(n)
is NOT a function named O that takes a variable n. It's meaning is different. {%
endhint %}

Sigma Notation
Sigma notation is a shorthand for showing a sum. It is similar in nature to a for
loop in programming.

General summation notation.

i=1
∑
n

ti = t1 + t2 + ... + tn

The above notation means that there are n terms and the summation notation
adds each of them together.

Typically the terms ti, is some sort of mathematical expression in terms of i

(think of it as a calculation you make with the loop counter). The i is replaced
with every value from the initial value of 1 (at the bottom of the ∑), going up
by 1, to n (the value at the top of the ∑)

Example:

i=1
∑

5
i = 1 + 2 + 3 + 4 + 5

Mathematical Definitions and Identities
Mathematical identities are expressions that are equivalent to each other.
Thus, if you have a particular term, you can replace it with its mathematical
identity.

Exponents
Definition

xn means (x)(x)(x)...(x) (n x's multiplied together)

Identities

xaxb = xa+b

xb
xa

= xa−b

(xa)b = xab

xa + xa = 2xa = x2a

2a + 2a = 2(2a) = 2a+1

Logarithms
::: tip

In computer text books, unless otherwise stated log means log2 as opposed to
log10 like math text books

:::

Definition

bn = a iff logba = n In otherwords logba is the exponent you need to raise b by
in order to get a

Identities

logb a = logc b

logc a , where c > 0

log ab = log a + log b

log(
b
a) = log a − log b

log ab = blog a

log x < x for all x > 0

log 1 = 0

log 2 = 1

Series
A series is the sum of a sequence of values. We usually express this using
sigma notation (see above).

Identities

i=0
∑
n

c(f(i)) = c
i=0
∑
n

f(i) , where c is a constant

i=0
∑
n

2i = 2n+1 − 1

i=0
∑
n

ai =
a−1

an+1−1

i=0
∑
n

ai ≤
a−1

1

i=1
∑
n

i = 2
n(n+1)

i=1
∑
n

i2 = 6
n(n+1)(2n+1)

i=1
∑
n

f(n) = nf(n)

i=n0

∑
n

f(i) =
i=1
∑
n

f(i) −
i=1
∑

n0−1
f(i)

	Intro to Python
	Local installation

	The Basics
	Interpreted vs Compiled
	The Python Shell
	Comments
	Basic Types and Variables
	Naming rules:
	Strings
	Numbers
	Numeric Operators
	Mathematical expressions

	Selection
	Boolean expressions
	zero vs non-zero
	Lazy Evaluation

	Syntax:

	Lists
	list assignments

	Dictionaries
	Iteration
	For Loops
	While Loops

	Functions
	Classes

	Algorithms Analysis
	What is Algorithms Analysis

	Measuring Resource Consumption
	Time Resource
	Memory Resource
	Measuring Resources

	Growth Rates
	Growth Rates
	Constant
	Logarithmic
	Linear
	Loglinear
	Quadratic
	Cubic
	Exponential

	Asymptotic Notation
	Formally
	Informally
	Worst case, Best Case, Average Case
	An easy way to think about Asymptotic Notation
	A closer look at the definition of big-O

	Example 1: Analysis of Linear Search
	Assumptions
	Analysis of an Unsuccessful Search
	Where do the counts come from?

	Analysis of a Successful Search
	Where do the counts come from?

	Analysis of a Successful Search

	Example 2: Analysis of Binary Search
	Analysis of an unsuccessful search
	Analysis of an unsuccessful search
	Number of Loop Iterations

	How to do an analysis in 5 steps
	Step 0: It is good to start by putting your code in.
	Step 1: Establish variables and functions (mathematical ones):
	Step 2: Count your operations
	Step 3: Establish the Mathematical Expression for T(n)
	Step 4: Simplify your Equation
	Step 5: State your final result.
	Step 3: Establish the Mathematical Expression for T(n)
	Step 4: Simplify your Equation
	Step 5: State your final result.

	Recursion
	Introduction
	The Run-time Stack

	Writing Recursive Functions
	Example: The factorial function.

	How Does Recursion Work?
	Analysis of a Recursive Function
	Analysis of Factorial function

	Drawbacks of Recursion and Caution
	Searching and Sorting
	Introduction

	Searching
	Linear Search
	Performance of a linear search
	Binary Search
	Preconditions of a binary search
	The algorithm

	Sorting
	Simple Sorts
	Bubble Sort
	Algorithm
	Animation
	Implementation

	Selection Sort
	Algorithm
	Animation
	Implementation

	Insertion Sort
	Algorithm
	Animation
	Implementation

	Merge Sort
	Algorithm:
	Merge algorithm

	Merge Sort Algorithm
	Animation
	Implementation
	mergeSort()
	recursive merge sort
	The merge function

	Quick Sort
	Algorithm:
	Partitioning Algorithm

	Quick Sort Algorithm
	Implementation
	quick sort
	Recursive Quicksort
	insertion sort
	Partitioning Function

	Lists
	What are Linked Lists?
	Introduction
	Typical Operations
	Enhancements

	List Implementation
	Array based Implementation
	Advantages
	Drawbacks

	Linked list Implementation
	Advantages
	Drawbacks

	Memory Requirements

	Implementation Concepts
	Nodes
	Iterators
	Linked List

	Implementation - List and Nodes
	Linked List
	Nodes
	Linked List Constructor

	push_front and pop_front
	Implementation - push_front(), pop_front()
	push_front(data)
	Does above always work?

	pop_front()
	Does the above always work?

	push_front(data)
	Does above always work?

	pop_front()
	Does the above always work?

	Modification - Sentinel Nodes
	Linked List Constructor - With Sentinels
	push_front()
	Does the above always work?

	pop_front()
	Does the above always work?
	push_front()
	Does the above always work?

	pop_front()
	Does the above always work?

	Stacks and Queues
	Operations
	Applications
	Stack Implementation
	Array Implementation
	Linked List Implementation

	Queue Implementation
	Linked List implementation
	Array Implementation

	Implementation - Iterators
	const_iterator vs iterator
	Iterator Functionality
	Default Constructors
	Friends
	begin()/cbegin() and end()/cend()
	Dereference (*)
	Increment and Decrement (++ and --)
	What data must we have?
	Private Constructors
	Putting all this together

	Tables
	Table operations

	A Simple Implementation
	Insertion/Update
	Remove
	Search
	Drawbacks

	Hash Tables
	Hash Functions
	Load Factor
	Collisions
	The pigeon hole principle

	Chaining
	Example
	Worst case run time
	Average case run time

	Linear Probing
	Method 1:
	Insertion
	Searching
	Removal
	Example:

	Method 2: Tombstoning
	Insertion
	Searching
	Removal
	Quadratic Probing
	Quadratic Probing Example

	Double Hashing

	Graphs
	Graph Definition
	Vertices
	Edges
	Other Definitions

	Representation
	Adjacency Matrix
	Adjacency List
	Examples
	A graph with no weights or directions
	A graph with weights but no directions
	A graph with weights and directions

	Dijkstra's Algorithm
	Example
	Initial state
	Expand A
	Expand E
	Expand B
	Expand D
	Expand C
	Shortest path

	Minimum Spanning Trees
	How to find a minimum spanning tree
	Kruskal's Algorithm
	Example

	Prim's Algorithm

	Trees
	Definitions
	Tree Implementation

	Heap and Heap Sort
	Priority Queues using Binary Heaps
	Binary Heap - Basic Definitions
	Insertion
	Example
	Insert 10 :
	Insert 6:
	Insert 20:
	Insert 5
	Insert 16
	Insert 17
	Insert 13
	Insert 2

	Removal
	Example: (Note, removal always removes value from root)

	Implementation

	Heapify and Heap Sort
	Heapify
	Building a maxheap in place
	heapify(3)
	heapify(2)
	heapify(1)
	heapify(0)

	Binary Search Trees
	Insertion
	Removal
	Traversals
	Depth First Traversals
	Preorder traversals
	Inorder traversals:
	Postorder traversals:

	Breadth-First Traversal

	BST Implemenation
	Constructor (C++)

	Iterative Methods
	Insert - Iterative version
	Search - Iterative version
	Breadth First Print
	Prime the Queue

	Recursive Methods
	search - recursive function
	Insert - recursive version
	InOrder Print function
	Pre Order Print
	Destructor

	Augmented Data Structures
	Tree Balance
	Perfectly Balanced Binary Trees
	Height Balanced Binary Trees
	Branches

	AVL Trees
	Height Balance
	Height Balance Implication
	Insertion
	Example
	Insert 30
	Insert 27

	Why does this work?
	Single Rotation
	Double Rotations

	Deletion
	Deletion always removes a leaf node
	Value is found in a leaf node
	Value is in a node with exactly one child
	Value is in a node with exactly two children

	Fixing the tree
	Balance of A was initially 0
	Balance of A was initially +/-1

	Red Black Trees
	Insertion
	General Insertion Algorithm
	Fixing nodes:
	Example
	Insert 30
	Insert 50
	Insert 40
	Insert 20
	Insert 10

	2-3 Trees
	Insertion
	Example:

	Complexity Theory
	Introduction to Computational Theory
	Complexity Theory
	Undecidable Problems

	P vs NP
	P class Problems
	NP class Problems
	NP-Complete Problems
	NP-Hard

	P vs NP

	Appendix: Mathematics Review
	Mathematical Notations and Shorthands
	Shorthands
	Variables
	For example:

	Functions
	Sigma Notation
	Mathematical Definitions and Identities
	Exponents
	Definition
	Identities

	Logarithms
	Definition
	Identities

	Series
	Identities

